Czasopismo
2009
|
Vol. 33, No. 1
|
39-54
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper deals with a method for the parametric system identification of a nonlinear system consisting of a linear transfer function and a nonlinear output component, being a static function. The aim of this paper is to discuss and illustrate the case of identifying such a nonlinear system using various linear model structures. The method applies to modal analysis of such mechanical structures for which measurements are corrupted by residual harmonic disturbances resulting from system nonlinearities. The paper considers transfer function model structures that ensure low computational cost and are suitable for hardware implementation, that is, for cases where pure or hybrid nonlinear system identification methods, like neural network models or the Hammerstain-Wiener model, are too time consuming and thus not practical. Simulation data has been used to illustrate the feasibility and numerical performance of the proposed approach.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
39-54
Opis fizyczny
Bibliogr., 18 poz., wykr.
Twórcy
autor
- AGH University of Science and Technology. Department of Robotics and Mechatronics, piotr.czop@labmod.com
Bibliografia
- Barszcz, T., Czop, P., Uhl, T., 2004, Hybrid modeling approach to the diagnosis of a turbine control system, The 10th IEEE International Conference Methods and Models in Automation and Robotics, Międzyzdroje 2004, 613-618.
- Barszcz, T., Czop, P., 2004, System Identification and its limitation relating to diagnosis of rotating machinery faults, The 10th IEEE International Conference Methods and Models in Automation and Robotics, Międzyzdroje Poland, 1029-1034.
- Bohlin, T., 2006, Practical Grey-box Process Identification: Theory and Applications (Advances in Industrial Control), Springer-Verlag, London.
- Box, G.E.P., Jenkins, G.M., Reisnel, G.C., 1994, Time Series Analysis: Forecasting and Control, third edition. Prentice Hall.
- Czop, P., 2005, Nonlinear Approach to Model-Based Diagnostics of a Rotor Supported with Hydrodynamic Bearings, Machine Dynamics Problems, 29, No 2, 23-34.
- Czop, P., 2007, Detection of Rotating Machinery Malfunctions with Use of Parametric System Identification Approach, Machine Dynamics Problems, 31, No 1, 38-47.
- Eykhoff, P., 1974, System identification, Wiley, New York.
- Giergiel, J., Uhl, T., 1990, Identification of mechanical systems (original title in Polish: Identyfikacja układów mechanicznych),PWN, Warsaw.
- Johansen, T.A., Murray-Smith, R., 1996, Multiple model approaches to modeling and control, Taylor & Francis.
- Larminat, P., Thomas, Y., 1983, Automatic Control Engineering-Linear Systems, 2, System Identification (original title in Polish: Automatyka - Układy liniowe, 2, Identyfikacja),PWN, Warsaw.
- Ljung, L., 1999, System Identification - Theory for the User, Prentice-Hall.
- MATHWORKS Inc., 2007, Matlab System Identification Toolbox Guide, Natick, MA: The Mathowrks Inc.
- Mościński, J., Ogonowski, Z., 1995, Advanced control with MATLAB & SIMULINK, Ellis Horwood Ltd.
- Norgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K., 2000, Neural network for modelling and control of dynamic systems, Springer-Verlag, London
- Patton, R.J., Frank, P.M., Clark, R.N. (eds.), 2000, Issues of fault diagnosis for dynamic systems, Springer-Verlag, London.
- Söderström, T., Stoica, P., 1988, System identification, Prentice-Hall International, Hemel Hempstead, U.K.
- Sohlberg B., Jacobsen E.W., 2008, Grey Box Modeling - Branches and Experience, Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea, 6-11.
- Tan, K.C., Li, Y., 2002, Grey-box model identification via evolutionary computing, Control Engineering Practice, 10, No 7, 673-684.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0043-0004