Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 16, No. 4 | 375-378
Tytuł artykułu

Flexoelectric effect modelling

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Conference on Liquid Crystals : Chemistry, Physics and Applications ; (17 ; 09.2007 ; Augustów, Poland)
Języki publikacji
EN
Abstrakty
EN
A statistical theory of dipole flexoelectric (FE) polarization in liquid crystals is used to calculate temperature dependence of order parameters, elastic constants and FE coefficients. Two systems with polar wedge-shaped and banana-shaped molecules are investigated. In both cases, the FE coefficients are proportional to the dipole moment component parallel to the molecule symmetry axis. It results from the symmetries of interactions and of the Mayer function. The origin of the FE effect and microscopic pictures of the distorted phases are discussed.
Wydawca

Rocznik
Strony
375-378
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
Bibliografia
  • 1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993.
  • 2. S. Stallinga and G. Vertogen, “Theory of orientational elasticity”, Phys. Rev. E49, 1483-1494 (1994).
  • 3. R. B. Meyer, “Piezoelectric effect in liquid crystals”, Phys. Rev. Lett. 22, 918-921 (1969).
  • 4. J. Prost and J. P. Marcerou, “On the microscopic interpretation of flexoelectricity”, J. Phys.-Paris 38, 315-324 (1977).
  • 5. J. P. Straley, “Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering”, Phys. Rev. A14, 1835-1841 (1976).
  • 6. A. Derzhanski and A. G. Petrov, “A molecular-statistical approach to the piezoelectric properties of nematic liquid crystals”, Phys. Lett. A36, 427 (1971).
  • 7. Y. Singh and U. P. Singh, “Density-functional theory of the flexoelectric effect in nematic liquids”, Phys. Rev. A39, 4254-4262 (1989).
  • 8. A. M. Somoza and P. Tarazona, “Density functional theory of the elastic constants of a nematic liquid crystal”, Mol. Phys. 72, 911-926 (1991).
  • 9. J. Stelzer, R. Berardini, and C. Zannoni, “Flexoelectric effect in liquid crystals formed by pear shaped molecules. A computer simulation study”, Chem. Phys. Lett. 299, 9-16 (1999).
  • 10. J. L. Billeter and R. A. Pelcovits, “Molecular shape and flexoelectricity”, Liq. Cryst. 27, 1151-1160 (2000).
  • 11. L. E. Reichl, A Modern Course in Statistical Physics, Edward Arnold (Publishers), Great Britain, 1980.
  • 12. J. Stecki and A. Kloczkowski, “On the stability of the orientational distribution of molecules”, J. Phys.-Paris 40, C3-360-C3-362 (1979).
  • 13. A. Kapanowski, “Statistical theory of the flexoelectric polarization for the uniaxial nematic phase”, Phys. Rev. E75, 031-709 (2007).
  • 14. Unpublished result.
  • 15. A. Kapanowski, “Statistical theory of elastic constants of biaxial nematic liquid crystals”, Phys. Rev. E55, 7090-7104 (1997).
  • 16. A. G. Petrov, ”Measurements and interpretation of flexoelectricity”, in Physical Properties of Liquid Crystals: Nematics, pp. 251264, edited by D. Dunmur, A. Fukuda, and G. Luckhurst, INSPEC, The Institution of Electrical Engineers, London, 2001.
  • 17. A. Ferrarini, "Shape model for the molecular interpretation of the flexoelectric effect”, Phys. Rev. E64, 021-710 (2001).
  • 18. L. Blum and A. J. Torruella, “Invariant expansion for twobody correlations: thermodynamic functions, scattering, and the Ornstein-Zernike equation”, J. Chem. Phys. 56, 303-310 (1972).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0036-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.