Warianty tytułu
Konferencja
International Workshop on Liquid Crystals for Photonic ; (26-28.04.2006 ; Gent, Belgium)
Języki publikacji
Abstrakty
Liquid crystal (LC) phased arrays and gratings have been employed in optical switching and routing [1]. These diffractive optic elements are of great interest because they can be scaled up to a large number of elements and their optical properties can be electrically addressed with a low driving voltage. LC phase gratings have been achieved either by periodic addressing of pixels or by using periodically-modified structures. The latter approach leads to less reconfigurable devices but the addressing is simpler. In this paper we focus on optical phased arrays where the phase is varied either continuously or discretely and where the periodicity is induced by electrode configuration. We first describe a possible structure based on a conductive silicon wafer. We argue that this structure can induce either continuously or discretely varying arrays while applying single voltage to the array. In the second part we simulate the behaviour of such arrays. We base the simulation on a LC synthesized at the Military University of Technology, this high-birefringence nematic LC shows in a 4-µm thick cell a linear phase shift range of more than 3600 between 1.2 V and 1.8 V. We calculate the distribution of the LC molecule director and assess the performance of the array with respect to the applied voltage. Finally, the relevance of such technology for switchable phased arrays is discussed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
269-273
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
autor
autor
autor
autor
autor
autor
- Dpto. Tecnología Fotónica, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, E-28040 Madrid, Spain, bob.bellini@gmail.com
Bibliografia
- 1. J.L. De Bougrenet De La Tocnaye, "Engineering liquid crystals for optimal uses in optical communication systems", Liq. Cryst. 31, 241-269 (2004).
- 2. K.M. Johnson, D.J. McKnight, and I. Underwood, "Smart spatial light modulators using liquid crystals on silicon", IEEE J. Quant. Electron. 29, 699-714 (1993).
- 3. S. Serati and J. Stockley, "Advanced liquid crystal on silicon optical phased arrays", IEEE Aerospace Conf. Proc. 3, 1395-1402 (2002).
- 4. H.S. Kwok and H.C. Huang, "Liquid crystal on silicon microdisplays", Proc. 7th Int. Conf. on Solid-State and Integrated Circuit Technology 3, 1987-1990 (2004).
- 5. D.J. McKnight, K.M. Johnson, and R.A. Serati, "256×256 liquid-crystal-on-silicon spatial light modulator", Appl. Opt. 33, 2775-2784 (1994).
- 6. H. De Smet, D. Cuypers, A. Van Calster, J. Van den Steen, and G. Van Doorselaer, "Design, fabrication and evaluation of a high-performance XGA VAN-LCOS microdisplay", Displays 23, 89-98 (2002).
- 7. J. Chen, P.J. Bos, H. Vithana, and D.L. Johnson, "An electro-optically controlled liquid crystal diffraction grating", Appl. Phys. Lett. 67, 2588-2590 (1995).
- 8. M. Honma and T. Nose, "Polarization-independent liquid crystal grating fabricated by microrubbing process", Jap. J. Appl. Phys. 42, 6992-6997 (2003).
- 9. R. Caputo, L. De Sio, A.V. Sukhov, N.V. Tabirian, A. Veltri, and C. Umeton, "Realization of a new kind of switchable holographic grating made of liquid crystal films separated by slices of polymeric material (POLICRYPS)", Opt. Lett. 29, 1261-1263 (2004).
- 10. D.X. Xu, P. Cheben, B. Lamontagne, S. Janz, and W.N. Ye, "Silicon-on-insulator (SOI) as a photonic platform", 207th ECS Meeting, 554 (2005).
- 11. L. Wosinski, "Silica-on-silicon technology for photonic integrated devices", Proc. 6th Int. Conf. on Transparent Optical Networks 2, 274-279 (2004).
- 12. B. Bellini, J.F. Larchanché, J.P. Vilcot, D. Decoster, R. Beccherelli, and A. d'Alessandro, "Photonic devices based on preferential etching", Appl. Optics 44, 7181-7186 (2005).
- 13. L. Kurowski, D. Bernard, E. Constant, and D. Decoster, "Electron-beam-induced reactivation of Si dopants in hydrogenated two-dimensional AlGaAs heterostructures: a possible new route for III-V nanostructure fabrication", J. Phys. Cond. Mat. 16, S127-S132 (2004).
- 14. D.P. Resler, D.S. Hobbs, R.C. Sharp, L.J. Friedman, and T.A. Dorschner, "High-efficiency liquid crystal optical phased-array beam steering", Opt. Lett. 21, 689-691 (1996).
- 15. G.F. Barrick, P.J. Bos, C.E. Titus, and B.K. Winker, "Computing the liquid crystal director field in optical phased arrays", Opt. Eng. 43, 924-932 (2004).
- 16. K.H. Fan Chiang, S.H. Chen, and S.T. Wu, "Diffraction effect on high-resolution liquid-crystal-on-silicon devices", Jap. J. Appl. Phys. 44, 3068-3072 (2005).
- 17. R.A. Soref and J.P. Lorenzo, "All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm", IEEE J. Quant. Electron. 22, 873-879 (1986).
- 18. C.V. Brown, E.E. Kriezis, and S.J. Elston, "Optical diffraction from a liquid crystal phase grating", J. Appl. Phys. 91, 3495–3500 (2002).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0015-0046