Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 47, nr 3 | 28-31
Tytuł artykułu

Transmisja koherentnej fali deBroglia w światłowodzie kapilarnym

Warianty tytułu
EN
Transmission of coherent deBroglia wave in hollow optical fiber
Języki publikacji
PL
Abstrakty
PL
Omówiono nową metodę transmisji atomowej fali deBroglia w jednomodowym światłowodzie kapilarnym. Odstrojona nieznacznie w kierunku fal niebieskich, od rezonansu atomowego, optyczna fala zanikająca w jednomodowym rdzeniu pierścieniowym kapilary stanowi barierę potencjału dla współpropagującej lub przeciwpropagującej się w kapilarze fali deBroglia. Rozważane są wstępnie perspektywy zastosowań tej nowej transmisji fali deBroglia do budowy koherentnych źródeł zimnych atomów, interferometrów atomowych i urządzeń odwrotnej litografii atomowej, będącej, być może, konkurencją fotolitografii krótkofalowej.
EN
A relatively new method of atomic deBroglie wave transmission in a hollow single mode optical fiber is presented. A slightly blue-detuned, from the atomic resonance, optical evanescent wave in the ring core of the capillary optical fiber creates a potential barrier for co-propagating or counter-propagating deBroglia wave. The applied optical wavelength, associated with the used atomic transitions, was in the range 1100-400 nm. There are considered initial application perspectives of this transmission technology of deBroglia wave for building of coherent cold sources of atoms, atom interferometers, and devices of the inverse lithography, which may possibly compete with the short-wave photo-lithography.
Wydawca

Rocznik
Strony
28-31
Opis fizyczny
Bibliogr. 22 poz., il.
Twórcy
autor
  • Politechnika Warszawska, Wydział Elektroniki i Technik Informatycznych
Bibliografia
  • [1] Kazantsev A. P., Surdutovich G. J., Yakovley V. P.: Mechanical action of light on atoms. World Scientific Publ., Singapore, 1990.
  • [2] Olshanii M. A., Ovchinnikov Yu. B., Letokhov V. S.: Laser guiding of atoms in a hollow optical fiber. Opt. Commun, 98, 77 (1993).
  • [3] Markensteiner S., Savage C. M., Zoller P., Rolston S. L.: Coherent atomic waveguides from hollow optical fibers: quantized atomic motion. Phys. Rev. A. 1994 Sep.; 50 (3) 2680-2690.
  • [4] Haruhiko Ito, Keiji Sakaki, Takeshi Nakata, Wonho Jhe, Motoichi Ohtsu: Optical potential for atom guidance in a cylindrical-core hollow fiber. Optics Communications 115 (1995) 57-64.
  • [5] Harris D. J., Savage C. M.: Atomic gravitational cavities from hollow optical fibers. Phys. Rev. A. 1995 May; 51; (5): 3967-3971.
  • [6] Renn M. J., Montgomery D., Vdovin O., Anderson D. Z., Wieman C. E., Cornell E. A.: Laser-guided atoms in hollow-core optical fibers. Physical Review Letters, vol. 75, no 18, 30 October 1995, pp. 3253-3256.
  • [7] Renn M. J., Donley E. A., Cornell E. A., Wleman C. E., Anderson D. Z.: Evanescent-wave guiding of atoms in hollow optical fibers. Phys. Rev. A R648 (1996).
  • [8] Ito H., Nakata T., Sakaki K., Ohtsu M., Lee K. I., Jhe W.: Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers. Phys. Rev. Lett., 76, 4500-4503 (1996).
  • [9] Ito H., Sasaki K., Jhe W., Ohtsu M.: Evanescent-light induced atom - guidance using a hollow optical fiber wight light coupled sideways. Opt. Commun., 141, 43-47 (1997).
  • [10] Pilloff H. S.: Enhanced atom guiding in metal-coated, hollow-core optical fibers. Opt. Commun., 143, 25-29 (1997).
  • [11] Song Y., Milam D., Hill W. T.: Long, narrow all-light atom guide. Opt. Lett. 24, 1805-1807 (1999).
  • [12] Yoo S. H., Won C., Kim J. A., Kim K., Shim U., Oh K., Paek U. C., Jhe W.: Diffracted near field of hollow optical fibre for a novel atomic funnel. J. Opt. B, 1, 364-370 (1999).
  • [13] Muller D., Cornell E. A., Anderson D. Z., Abraham E. R.: Guiding laser-cooled atoms in hollow-core fibers. Phys. Rev.a61, 033411 (2000).
  • [14] Shin Y. I., Kim K., Kim J. A., Noh H. R., Jhe W., Oh K., Paek U.C.: Diffraction-limited dark laser spot produced by a hollow optical fiber. Opt. Lett., 26, 119-121 (2001).
  • [15] Dali R. G., Hoogerland M. D., Tierney D., Baldwin K. G. H., Buckman S. J.: Single-mode hollow optical fibres for atom guiding. Appl. Phys. B74, 11-18(2002).
  • [16] Dall R. G., Hoogerland M. D., Baldwin K. G. H., Buckham S. J.: Guiding of metastable helium atoms through hollow optical fibres. Internet Communications, Australian National University, Canberra, http://www.rsphysse.anu.edu.au
  • [17] Noh H. R., Jhe W.: Atom optics with hollow optical systems. Phys. Reports 372, 269-317 (2002).
  • [18] Young-ll Shin, Myoungsun Heo, Jae-Wan Kim, Wooshik Shim, Heung-Ryoul Noh, Wonho Jhe: Diffraction-limited optical dipole trap with a hollow optical fiber. J. Opt. Soc. Am. B, vol. 20, no 5, May 2003, pp. 937-941.
  • [19] Balykin V. I., Hakuta K., Kien Fam Le, Liang J. Q., Morinaga M.: Atom trapping and guiding with a subwavelength optical fiber. Physical Review A 70, 011401 (R) (2004), pp. 1-4, Rapid Communications.
  • [20] Hautakorpi M., Schevchenko A., Kaivola M.: Spatially smooth evanescent-wave profiles in a multimode hollow optical fiber for atom guiding. Opt. Commun. 237, 103-110 (2004).
  • [21] Fatemi F. K., Bashkansky M., Moore S.: Side illuminated hollow-core optical fiber for atom guiding. Optics Express, vol. 13, no 13, 27 June 2005, pp. 4890-4895.
  • [22] Scholten R.: Atom Optics - Nanofocusing. School of Physics, Univ. of Melbourne, Web resources.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0005-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.