Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 13, No. 4 | 401-415
Tytuł artykułu

Computationally efficient and reliable fingerprint mosaicking on embedded hardware using minutiae

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fingerprint matching is a common technique for biometric authentication. Solid state sensors allow the use of fingerprint recognition in small sized embedded systems. The size of these sensors makes it necessary to store several impressions of the same finger to provide good coverage of the entire fingertip. In order to reduce memory requirements and matching time all these impressions can be fused into a single larger image. Memory constraints imposed by embedded computers prohibit the use of images. A fingerprint is therefore represented as a set of minutiae coordinates and minutiae angles. We present a two stage approach to combine two fingerprints. First, a RANSAC based method is used to determine a rigid transformation which roughly aligns the two fingerprints. Second, the transformation is optimised using a robust least median of squares solution. The reliability of the method is demonstrated on a large synthetic dataset and real fingerprint images. The computational complexity and memory requirements allow implementation of the algorithm on embedded hardware.
Wydawca

Rocznik
Strony
401-415
Opis fizyczny
Bibliogr. 17 poz., il.
Twórcy
autor
  • Siemens AG Österreich, Program and System Engineering, Graz, Austria
autor
  • Institute for Computer Graphics and Vision, Univ. of Technology, Graz, Austria
Bibliografia
  • [1] Fischler M. A., Bolles R. C.: The random sample consensus: a paradigm for model fitting with appli- cations to image analysis and automated cartography. Communications of the ACM, 24(6),381-395, 1981.
  • [2] Rousseeuw P. J., Leroy A. M.: Robust regression and outlier detection. Wiley, New York, NY, 1987.
  • [3] Scott G., Longuet-Higgins H. C.: An algorithm for associating the features of two patterns. Proc. Royal Society London B, 244, 21-26, 1991.
  • [4] Shapiro L. S., Brady L. M.: Feature-based correspondence - an eigenvector approach. Image and Vision Computing, 10, 283-288, 1992.
  • [5] Huttenlocher D. P., Klanderman G. A., Rucklidge W. J.: Comparing images using the Hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(9), 850-863, 1993.
  • [6] Olson C. F.: Probabilistic indexing for object recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(5), 518-522, 1995.
  • [7] Chang S. H., Cheng F. H., Hsu W. H., Wu G. Z.: Fast algorithm for point pattern matching: invariant to translations, rotations and scale changes. Pattern Recognition, 30(2), 311-320, 1997.
  • [8] Jain A., Hong L., Pankanti S., Bolle R.: An identity authentication system using fingerprints. Proc. of the IEEE, 85(9), 1365-1388, 1997.
  • [9] Maio D., Maltoni D.: Direct gray-scale minutiae detection in fingerprints. IEEE Trans. on Pattern Analysis and Machine Intelligence, 18(1), 27-39, 1997.
  • [10] Gold S., Rangarajan A., Lu C. P., Pappu S., Mjolsness E.: New algorithms for 2D and 3D point matching: pose estimation and correspondence. Pattern Recognition, 31(8), 1019-1031, 1998.
  • [11] Jain A., Bolle R., Pankanti S. (ed): Biometrics: personal identification in networked society. Kluwer Academic Publishers, Boston, 1999.
  • [12] Ratha N. K., Chen S., Jain A. K.: Adaptive flow orientation based feature extraction in fingerprint images. Technical Report MSU-CPE-99-17, Michigan State University, Dept. of Computer Science and Engineering, 1999.
  • [13] Cappelli R., Erol A., Maio D., Maltoni D.: Synthetic Fingerprint-image Generation. Proc. Int. Conf. on Pattern Recognition (ICPR), 4, 471-474, 2000.
  • [14] Carcassoni M., Hancock E. R.: Point pattern matching with robust spectral correspondence. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 1, 649-655, 2000.
  • [15] Toh K. A., Yau W. Y., Jiang X., Chen T. P., Lu J., Lim E.: Minutiae data synthesis for fingerprint identification applications. Proc. Int. Conf. on Image Processing, 3, 262-265, 2001.
  • [16] Jain A., Ross A.: Fingerprint mosaicking. Proc. IEEE Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 4, 4064-4067, 2002.
  • [17] Ramoser H., Wachmann B., Bischof H.: Efficient alignment of fingerprint images. Proc. Int. Conf. on Pattern Recognition, 3, 648-651, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0002-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.