Czasopismo
2004
|
Vol. 13, No. 4
|
307-328
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This article introduces a new curve reconstruction method based on recovering the control points of parametric cubic curves. The method developed here has two stages: finding the 3D control points of parametric curves and reconstruction of free curves. The 3D control points of curves are computed from 2D image sequences by using projective reconstruction of the 3D control points and the bundle adjustment algorithm. The relationships among parametric curves, such as Hermite curves, Bézier curves and B-spline curves, are established so that a curve of any model can be achieved for best fitting. Some experiments are performed to show the performance and effectiveness of the algorithm. The method is based on the slope following and learning algorithm, which provides an efficient way of finding the 3D control points of any type of cubic Bézier curves. This method, which is an extension of our previous work on recovering control points of 2D Bézier curves, can automatically fit a set of data points with piecewise geometrically continuous cubic parametric curves. The experimental results demonstrate that our method is a fast and efficient way of recovering 3D control points of parametric curves, matching free curves and shape reforming.
Czasopismo
Rocznik
Tom
Strony
307-328
Opis fizyczny
Bibliogr. 31 poz., wykr.
Twórcy
autor
- Human-Robot Symbiosis Lab, Dept. of Computer Science & Engineering, Jahangirnagar University Savar, Dhaka - 1342, Bangladesh, alamin@juniv.edu ; alamin_bhuiyan@yahoo.com
autor
- Information System Lab, Graduate School of Engineering, Osaka City University 3-3-138 Sugimoto, Sumiyoshiku, Osaka 558-8585, Japan, hama@info.eng.osaka-cu.ac.jp
Bibliografia
- [1] Catmull E.: A subdivision algorithm for computer display of curved surfaces, Report UTEC-CSc-74-133, University of Utah, USA, December, 1974.
- [2] Newman M., Sproull F.: Principles of Interactive Computer Graphics. McGraw-Hill, New York, 1979.
- [3] Plastock R. A., Kalley G.: Theory and Problems of Computer Graphics. McGraw-Hill Book Inc., New York, 1986.
- [4] Sederberg T. W., Goldman R. N.: Algebraic geometry for computer-aided geometric design. IEEE Computer Graphics & Applications, 6(6), 52-59, 1986.
- [5] Ramshaw L.: Blossoming: A connect-the-dots approach to splines. Digital Systems Research Center Report 19, CA, 1987.
- [6] Foley J. D., Dam A. V.: Fundamentals of Interactive Computer Graphics. Addison-Wesley, Massachusetts, 1990.
- [7] Barry P. J., Goldman R. N.: Interpolation and approximation of curves and surfaces using plya polynomials. Graphical Models and Image Processing, 53(2), 137-148, 1991.
- [8] Chou J. J., Piegl L. A.: Data reduction using cubic rational B-splines. IEEE Computer Graphics and Applications, 12(3), 60-68, 1992.
- [9] Hodges L. F.: Tutorial: Time-multiplexed stereoscopic computer graphics. IEEE Computer Graphics & Applications, 12(2), 20-30, 1992.
- [10] Sederberg T. W., Farouki R. T.: Approximation by interval Bézier curves. IEEE Computer Graphics & Applications, 12(5), 87-95, 1992.
- [11] Chou J. J., Blake M. W.: Planar cubics through a point in a direction. Computer-Aided Design, 25(6), 348-354, 1993.
- [12] Farin G. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, New York, 1993.
- [13] Hama H., Okamoto T.: Fast generation method of Bézier curves and anti-aliasing, J. TV Engineers of Japan, 47(12), 1629-1636, 1993.
- [14] Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric Design. A K Peters, Massachusetts, 118-212, 1993.
- [15] Huttenlocher D. P., Klanderman G. A., Rucklidge W. J.: Comparing images using the Hausdorff distance. IEEE Transactions on PAMI, 15(9), 850-863, 1993.
- [16] Bogacki P., Weinstein S. E., Ye X.: Degree reduction of Bézier curves by uniform approximation with endpoint interpolation. Computer Aided Design, 27(9), 651-661, 1995.
- [17] Eck M. Least squares degree reduction of Bézier curves. Computer Aided Design, 27(11), 845-851, 1995.
- [18] Watt A., Watt M.: Advanced Animation and Rendering Techniques. ACM Press, New York, 1995.
- [19] Ye X. Generating Bézier points for curves and surfaces from boundary information. Computer Aided Design, 27(12), 875-885, 1995.
- [20] Shao L., Zhou H.: Curve fitting with Bézier curves. Graphical Models and Image Processing, 58(3), 223-232, 1996.
- [21] Shiga N. Image Keyword for Picture DB. M. Engg. Thesis, Dept. EEE, Osaka City University, 1996.
- [22] Gravesen J.: Adaptive subdivision and the length and energy of Bézier curves. Computational Geometry, 8(1), 12-31, 1997.
- [23] Berry T. G., Patterson R. R.: The uniqueness of Bézier control points. Computer Aided Geometric Design, 14(9), 877-879, 1997.
- [24] Bhuiyan M.A., Sein M.M., Hama H.: On a free curve matching method. Proc. IASTED Int. Conf. on Signal and Image Processing, Las Vegas, USA, 473-477, 1998.
- [25] Mineur Y., Lichah T., Castelain J. M., Giaume H.: A shape controlled filling method for Bézier curves. Computer Aided Geometric Design, 15(9), 879-891, 1998.
- [26] Herann T.: On the derivatives of second and third degree rational Bézier curves. Computer Aided Geometric Design, 16(3), 157-163, 1999.
- [27] Sederberg T.W., Zheng J., Klimaszewski K., Dokken T.: Approximate implicitization using monoid curves and surfaces. Graphical Models and Image Processing, 61(4), 177-198, 1999.
- [28] Bhuiyan M.A., Hama H.: A fast algorithm for finding control points of Bézier curves. Int. J. of Robotics and Automation, 16(3), 117-123, 2001.
- [29] Sein M. M., Hama H.: Recovering the 3D B-spline control points of the free curves for shape reforming, E84-D(8), 990-998, 2001.
- [30] Bhuiyan M. A., Hama H.: Identification of actors drawn in Ukiyoe actors. Pattern Recognition, 35(1), 93-102, 2002.
- [31] Bhuiyan M. A., Hama H.: Recovering the control points of Bézier curves for line image indexing. Journal of Electronic Imaging, 11(2), 177-186, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0002-0027