Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Vol. 13, No. 2 | 123-127
Tytuł artykułu

Stable spinning optical solitons in two and three dimensions

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
International Workshop on Nonlinear Optics Applications ; (7 ; 17-20.06.2004 ; Konstancin, Poland)
Języki publikacji
EN
Abstrakty
EN
A brief overview of recent results in the field of multidimensional spinning (vortex) optical solitons is given. We address the stability problem of two- and three-dimensional spinning solitons in media with competing nonlinearities. We conclude that these solitons could be stable, provided that their external size and power (energy) are large enough. The stability of vorticity-carrying solitons is a generic feature of media with competing self-focusing and self-defocusing nonlinearities.
Słowa kluczowe
Wydawca

Rocznik
Strony
123-127
Opis fizyczny
Bibliogr. 32 poz., il., wykr.
Twórcy
Bibliografia
  • 1. M.S. Soskin and M.V. Vasnetsov, “Nonlinear singular optics“, Pure Appl. Opt. 7, 301-311 (1998).
  • 2. Y.S. Kivshar and G.P. Agrawal, Optical Solitons: From Fibers to Photonics Crystals, Academic Press, Amsterdam, 2003.
  • 3. K.T. Gahagan and G.A. Swartzlander, “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap”, J. Opt. Soc. Am. B16, 533-537 (1999).
  • 4. H.He, M.E.J. Friese, N.R. Heckenberg, and H. Rubinsztein- Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity”, Phys. Rev. Lett. 75, 826-829 (1995).
  • 5. C.-C. Jeng, M.-F. Shih, K. Motzek, and Y. Kivshar, “Partially incoherent optical vortices in self-focusing nonlinear media”, Phys. Rev. Lett. 92, 043904 (2004).
  • 6. D.V. Petrov, L. Torner, J. Martorell, R. Vilaseca, J.P. Torres, and C. Cojocaru, “Observation of azimuthal modulational instability and formation of patterns of optical solitons in a quadratic nonlinear crystal”, Opt. Lett. 23, 1444-1446 (1998).
  • 7. M.S. Bigelow, P. Zerom, and R.W. Boyd, “Breakup of ring beams carrying orbital angular momentum in sodium vapor”, Phys. Rev. Lett. 92, 083902 (2004).
  • 8. L. Torner and D.V. Petrov, “Azimuthal instabilities and self-breaking of beams into sets of solitons in bulk second-harmonic generation”, Electron. Lett. 33, 608-610 (1997).
  • 9. W. J. Firth and D. V. Skryabin, “Optical solitons carrying orbital angular momentum”, Phys. Rev. Lett. 79, 2450-2453 (1997).
  • 10. D. Mihalache, D. Mazilu, L.-C. Crasovan, B.A. Malomed, and F. Lederer, “Azimuthal instability of spinning spatiotemporal solitons”, Phys. Rev. E62, R1505-R1508 (2000).
  • 11. I. Towers, A.V. Buryak, R.A. Sammut, and B. A. Malomed, “Stable localized vortex solitons”, Phys. Rev. E63, 055601(R) (2001).
  • 12. M. Quiroga-Teixeiro and H. Michinel, “Stable azimuthal stationary state in quintic nonlinear optical media”, J. Opt. Soc. Am. B14, 2004-2009 (1997).
  • 13. I. Towers, A.V. Buryak, R.A. Sammut, B.A. Malomed, L.-C. Crasovan, and D. Mihalache, “Stability of spinning ring solitons of the cubic-quintic nonlinear Schrödinger equation”, Phys. Lett. A288, 292-298 (2001).
  • 14. D. Mihalache, D. Mazilu, I. Towers, B. A. Malomed, and F. Lederer, “Stable two-dimensional spinning solitons in a bimodal cubic-quintic model with four-wave mixing”, J. Opt. A: Pure Appl. Opt. 4, 615-623 (2002).
  • 15. B.A. Malomed, L.-C. Crasovan, D. Mihalache, “Stability of the vortex solitons in the cubic-quintic model”, Physica D 161, 187-201 (2002).
  • 16. R.L. Pego and H.A. Warchall, “Spectrally stable encapsulated vortices for nonlinear Schrödinger equations”, J. Nonlinear Sci. 12, 347-394 (2002).
  • 17. T.A. Davydova, A.I. Yakimenko, and Yu.A. Zaliznyak, “Two-dimensional solitons and vortices in normal and anomalous dispersive media”, Phys. Rev. E67, 026402 (2003).
  • 18. T.A. Davydova and A.I. Yakimenko, “Stable multicharged localized optical vortices in cubic-quintic nonlinear media”, J. Opt. A: Pure Appl. Opt. 6, S197-S201 (2004).
  • 19. D. Mihalache, D. Mazilu, B.A. Malomed, and F. Lederer, “Stable vortex solitons supported by competing quadratic and cubic nonlinearities”, Phys. Rev. E69, 066614 (2004).
  • 20. D. Mihalache, D. Mazilu, B.A. Malomed, and F. Lederer, “Stable vortex solitons in a vectorial cubic-quintic model”, J. Opt. B: Quantum Semiclass. Opt. 6, S341-S350 (2004).
  • 21. D. Mihalache, D. Mazilu, L.-C. Crasovan, I. Towers, A.V. Buryak, B.A. Malomed, L. Torner, J.P. Torres, and F. Lederer, “Stable spinning optical solitons in three-dimensions”, Phys. Rev. Lett. 88, 073902 (2002).
  • 22. D. Mihalache, D. Mazilu, L.-C. Crasovan, I. Towers, B.A. Malomed, A.V. Buryak, L. Torner, and F. Lederer, “Stable three-dimensional spinning optical solitons supported by competing quadratic and cubic nonlinearities”, Phys. Rev. E66, 016613 (2002).
  • 23. D. Mihalache, D. Mazilu, I. Towers, B.A. Malomed, and F. Lederer, “Stable spatiotemporal spinning solitons in a bimodal cubic-quintic medium”, Phys. Rev. E67, 056608 (2003).
  • 24. D. Rozas, C.T. Law, and G.A. Swartzlander, “Propagation dynamics of optical vortices” J. Opt. Soc. Am. B14, 3054-3065 (1997).
  • 25. Y.V. Kartashov, L.-C. Crasovan, D. Mihalache, and L. Torner, “Robust propagation of two-color soliton clusters supported by competing nonlinearities”, Phys. Rev. Lett. 89, 273902 (2002).
  • 26. L.-C. Crasovan, Y.V. Kartashov, D. Mihalache, L. Torner, Y.S. Kivshar, and V.M. Perez-Garcia, “Soliton molecules: robust clusters of optical spatiotemporal solitons”, Phys. Rev. E67, 046610 (2003).
  • 27. D. Mihalache, D. Mazilu, L.-C. Crasovan, B.A. Malomed, F. Lederer, and L. Torner, “Robust soliton clusters in media with competing cubic and quintic nonlinearities”, Phys. Rev. E68, 046612 (2003).
  • 28. D. Mihalache, D. Mazilu, L.-C. Crasovan, B.A. Malomed, F. Lederer, and L. Torner, “Soliton clusters in three-dimensional media with competing cubic and quintic nonlinearities”, J. Opt. B: Quantum Semiclass. Opt. 6, S333-S340 (2004).
  • 29. A.V. Buryak, Yu.S. Kivshar, and S. Trillo, “Optical solitons supported by competing nonlinearities”, Opt. Lett. 20, 1961-1963 (1995).
  • 30. M.A. Karpierz, “Coupled solitons in waveguides with secondand third-order nonlinearities” Opt. Lett. 20, 1677-1679 (1995).
  • 31. A.V. Buryak, P. Di Trapani, D.V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications”, Phys. Rep. 370, 63-235 (2002).
  • 32. L. Torner, D. Mazilu, and D. Mihalache, “Walking solitons in nonlinear quadratic media”, Phys. Rev. Lett. 77, 2455-2458 (1996).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA0-0002-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.