Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 116, nr 1-4 | 205-222
Tytuł artykułu

Language Equations with Symmetric Difference

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper investigates the expressive power of language equations with the operations of concatenation and symmetric difference. For equations over every finite alphabet Σ with |Σ| ≥1, it is demonstrated that the sets representable by unique solutions of such equations are exactly the recursive sets over , and the sets representable by their least (greatest) solutions are exactly the recursively enumerable sets (their complements, respectively). If |Σ| ≥ 2, the same characterization holds already for equations using symmetric difference and linear concatenation with regular constants. In both cases, the solution existence problem is Π (0,1)-complete, the existence of a unique, a least or a greatest solution is Π(0,2)-complete, while the existence of finitely many solutions is Σ(0,3)-complete.
Słowa kluczowe
Wydawca

Rocznik
Strony
205-222
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
Bibliografia
  • [1] J. Autebert, J. Berstel, L. Boasson, "Context-free languages and pushdown automata", in: Rozenberg, Salomaa (Eds.), Handbook of Formal Languages, Vol. 1, Springer-Verlag, Berlin, 1997, 111-174.
  • [2] F. Baader, R. Küsters, "Unification in a description logic with transitive closure of roles", Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001, Havana, Cuba, December 3-7, 2001), LNCS 2250, 217-232.
  • [3] F. Baader, A. Okhotin, "Complexity of language equations with one-sided concatenation and all Boolean operations", 20th International Workshop on Unification (UNIF 2006, Seattle, USA, August 11, 2006), 59-73.
  • [4] B. S. Baker, R. V. Book, "Reversal-bounded multipushdown machines", Journal of Computer and System Sciences, 8 (1974), 315-332.
  • [5] S. Bala, "Complexity of regular language matching and other decidable cases of the satisfiability problem for constraints between regular open terms", Theory of Computing Systems, 39:1 (2006), 137-163.
  • [6] S. Ginsburg, H. G. Rice, "Two families of languages related to ALGOL", Journal of the ACM, 9 (1962), 350-371.
  • [7] J. Hartmanis, "Context-free languages and Turing machine computations", Proceedings of Symposia in Applied Mathematics, Vol. 19, AMS, 1967, 42-51.
  • [8] A. Jeż, "Conjunctive grammars can generate non-regular unary languages", International Journal of Foundations of Computer Science, 19:3 (2008), 597-615.
  • [9] A. Jeż, A. Okhotin, "Conjunctive grammars over a unary alphabet: undecidability and unbounded growth", Theory of Computing Systems, 46:1 (2010), 27-58.
  • [10] A. Jeż, A. Okhotin, "On the computational completeness of equations over sets of natural numbers", 35th International Colloquium on Automata, Languages and Programming (ICALP 2008, Reykjavik, Iceland, July 7-11, 2008), 63-74.
  • [11] A. Jeż, A. Okhotin, "Equations over sets of natural numbers with addition only", STACS 2009 (Freiburg, Germany, 26-28 February, 2009), 577-588.
  • [12] A. J. Korenjak, J. E. Hopcroft, "Simple deterministic languages", 7th Annual Symposium on Switching and Automata Theory (SWAT 1966, Berkeley, USA, October 23-25, 1966), 36-46.
  • [13] M. Kunc, "Regular solutions of language inequalities and well quasi-orders", Theoretical Computer Science, 348:2-3 (2005), 277-293.
  • [14] M. Kunc, "The power of commuting with finite sets of words", Theory of Computing Systems, 40:4 (2007), 521-551.
  • [15] T. Lehtinen, A. Okhotin, "On equations over sets of numbers and their limitations", International Journal of Foundations of Computer Science, 22:2 (2011), 377-393.
  • [16] T. Lehtinen, A. Okhotin, "On language equations XXK = XXL and XM = N over a unary alphabet", Developments in Language Theory (DLT 2010, London, Ontario, Canada, 17-20 August 2010), LNCS 6224, 291-302.
  • [17] W. Martens, M. Niewerth, T. Schwentick, "Schema design for XML repositories: complexity and tractability", PODS 2010 (Indianapolis, USA, June 6-11, 2010), 239-250.
  • [18] A. R. Meyer, A. M. Rabinovich, "Valid identity problem for shuffle regular expressions", Journal of Automata, Languages and Combinatorics 7:1 (2002), 109-125.
  • [19] A. Okhotin, "Conjunctive grammars and systems of language equations", Programming and Computer Software, 28:5 (2002), 243-249.
  • [20] A. Okhotin, "Decision problems for language equations with Boolean operations", Automata, Languages and Programming (ICALP 2003, Eindhoven, The Netherlands, 30 June-4 July 2003), LNCS 2719, 239-251.
  • [21] A. Okhotin, "Boolean grammars", Information and Computation, 194:1 (2004), 19-48.
  • [22] A. Okhotin, "The dual of concatenation", Theoretical Computer Science, 345:2-3 (2005), 425-447.
  • [23] A. Okhotin, "Unresolved systems of language equations: expressive power and decision problems", Theoretical Computer Science, 349:3 (2005), 283-308.
  • [24] A. Okhotin, "Strict language inequalities and their decision problems", Mathematical Foundations of Computer Science (MFCS 2005, Gdansk, Poland, August 29-September 2, 2005), LNCS 3618, 708-719.
  • [25] A. Okhotin, "Seven families of language equations", AutoMathA 2007, Palermo, Italy, June 18-22, 2007.
  • [26] A. Okhotin, "Decision problems for language equations", Journal of Computer and System Sciences, 76:3-4 (2010), 251-266.
  • [27] A. Okhotin, O. Yakimova, "Language equations with complementation: Decision problems", Theoretical Computer Science, 376:1-2 (2007), 112-126.
  • [28] A. Okhotin, O. Yakimova, "Language equations with complementation: Expressive power", Theoretical Computer Science, 416 (2012), 71-86.
  • [29] R. Parikh, A. Chandra, J. Halpern, A. Meyer, "Equations between regular terms and an application to process logic", SIAM Journal on Computing, 14:4 (1985), 935-942.
  • [30] E. L. Post, The Two-Valued Iterative Systems of Mathematical Logic, Princeton University Press, 1941.
  • [31] S. V. Yablonski, G. P. Gavrilov, V. B. Kudryavtsev, Funktsii algebry logiki i klassy Posta (Functions of logic algebra and the classes of Post), Moscow, 1966, in Russian.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0024-0089
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.