Czasopismo
2012
|
Vol. 114, nr 1
|
55-72
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Repetition avoidance has been intensely studied since Thue’s work in the early 1900's. In this paper, we consider another type of repetition, called pseudopower, inspired by theWatson-Crick complementarity property of DNA sequences. A DNA single strand can be viewed as a string over the four-letter alphabet {A,C,G, T }, whereinA is the complement of T , while C is the complement of G. Such a DNA single strand will bind to a reverse complement DNA single strand, called its Watson-Crick complement, to form a helical double-stranded DNA molecule. The Watson-Crick complement of a DNA strand is deducible from, and thus informationally equivalent to, the original strand. We use this fact to generalize the notion of the power of a word by relaxing the meaning of "sameness" to include the image through an antimorphic involution, the model of DNA Watson- Crick complementarity. Given a finite alphabet &Sigma: an antimorphic involution is a function Θ : Σ*→Σ* which is an involution, i.e., Θ2 equals the identity, and an antimorphism, i.e., Θ(uv) = Θ(v)Θ(u), for all u∈Σ* For a positive integer k, we call a word w a pseudo-kth-power with respect to Θ if it can be written as w = u1 . . . uk, where for 1 ≤ i, j ≤ k we have either ui = uj or ui = Θ(uj). The classical kth-power of a word is a special case of a pseudo-kth-power, where all the repeating units are identical. We first classify the alphabets Σ and the antimorphic involutions . for which there exist arbitrarily long pseudo-kth-power-free words. Then we present efficient algorithms to test whether a finite word w is pseudo-kth-power-free.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
55-72
Opis fizyczny
Bibliogr. 25 poz., tab.
Twórcy
autor
autor
autor
- Department of Computer Science The University of Western Ontario, London, Ontario, Canada N6A 5B7, lila@csd.uwo.ca
Bibliografia
- [1] Anne, V., Zamboni, L., Zorca, I.: Palindromes and pseudo-palindromes in Episturmian and pseudopalindromic infinite words, Publications du LACIM, Proc. of Words 2005 (S. Brlek, C. Reutenauer, Eds.), 36, 2005.
- [2] Aršon, S. E.: Démonstration de l'existence des suites asymétriques infinies, Mat. Sb., (N. S.) 2(3), 1937, 769-779.
- [3] Berstel, J.: Axel Thue's papers on repetitions in words: a translation, Number 20 in Publications du Laboratoire de Combinatoire et d'InformatiqueMathématique, Université du Québec `a Montréal, 1995.
- [4] Crochemore, M.: Recherche linéaire d'un carré dans un mot, Comptes Rendus Acad. Sci. Paris Sér. I, 296, 1983, 781-784.
- [5] Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words, Theoret. Comput. Sci., 411(3), 2010, 617-630.
- [6] de Luca, A., De Luca, A.: Pseudopalindrome closure operators in free monoids, Theoret. Comput. Sci., 362, 2006, 282-300.
- [7] Dekking, F.: Strongly non-repetitive sequences and progression-free sets, J. Combin. Theory Ser. A, 27(2), 1979, 181-185.
- [8] Erdös, P.: Some unsolved problems, Michigan Math. J., 4(3), 1957, 291-300.
- [9] Evdokimov, A. A.: Strongly asymmetric sequences generated by a finite number of symbols, Dokl. Akad. Nauk. SSSR, 179, 1968, 1268-1271.
- [10] Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology, Cambridge University Press, 1997.
- [11] Kari, L., Mahalingam, K.: Watson-Crick palindromes in DNA computing, Nat. Comput., 9(2), 2010, 297-316.
- [12] Keränen, V.: Abelian squares are avoidable on 4 letters, Proc. 19th Int'l Conf. on Automata, Lang., and Progr. (ICALP '92) (W. Kuich, Ed.), 1992.
- [13] Keränen, V.: A powerful abelian square-free substitution over 4 letters, Theoret. Comput. Sci., 410, 2009, 38-40.
- [14] Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time, Proc. 40th Ann. Symp. Found. Comput. Sci. (FOCS '99), 1999.
- [15] Kosaraju, S. R.: Computation of squares in a string, Proc. 5th Ann. Symp. Combinat. Pattern Matching (CPM 1994) (M. Crochemore, D. Gusfield, Eds.), 1994.
- [16] Leech, J.: A problem on strings of beads, Math. Gaz., 41(338), 1957, 277-278.
- [17] Main, M., Lorentz, R.: Linear time recognition of square free strings, in: Combinat. Algorithms on Words (A. Apostolico, Z. Galil, Eds.), Springer, 1985, 272-278.
- [18] Mirkin, S.: Expandable DNA repeats and human disease, Nature, 447(7147), 2007, 932-940.
- [19] Morse, H.: Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc., 22(1), 1921, 84-100.
- [20] Pleasants, P.: Non-repetitive sequences, Math. Proc. Cambridge Philos. Soc., 68(2), 1970, 267-274.
- [21] Shallit, J.: Simultaneous avoidance of large squares and fractional powers in infinite binary words, Int'l. J. Found. Comput. Sci., 15, 2004, 317-327.
- [22] Thue, A.: ¨Uber unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat.-Nat. Kl., (7), 1906, 1-22.
- [23] Thue, A.: ¨Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat.- Nat. Kl., (1), 1912, 1-67.
- [24] Xu, Z.: A minimal periods algorithm with applications, Proc. 21st Ann. Symp. Combinat. Pattern Matching (CPM 2010) (A. Amir, L. Parida, Eds.), 2010.
- [25] Yu, X.: A new solution for Thue's problem, Inform. Process. Lett., 54, 1995, 187-191
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0024-0014