Czasopismo
2012
|
Vol. 114, nr 1
|
31-54
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The minimum system of Positive Modal Logic SK+ is the (...)-fragment of the minimum normal modal logic K with local consequence. In this paper we develop some of the model theory for SK+ along the yet standard lines of themodel theory for classical normalmodal logic. We define the notion of positive bisimulation between two models, and we study the notions of m-saturated models and replete models. We investigate the positive maximal Hennessy-Milner classes. Finally, we present a Keisler-Shelah type theorem for positive bisimulations, a characterization of the first-order formulas invariant for positive bisimulations, and two definability theorems by positive modal sequents for classes of pointed models.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
31-54
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
autor
- CONICET and Departamento de Matemáticas Facultad de Ciencias Exactas, Universidad Nacional del Centro Pinto 399, 7000- Tandil, Argentina, scelani@exa.unicen.edu.ar
Bibliografia
- [1] J. VAN BENTHEM, Modal Logic and Classical Logic. Bibliopolis, Napoles, 1985.
- [2] J. VAN BENTHEM, J. BERGSTRA, Logic of transition systems, Journal of Logic, Language and Information, 3, (1994), pp. 247-283.
- [3] M. M. BOSANGUE AND M. Z. KWIATKOWSKA, Re-interpreting the Modal μ-Calculus, Modal Logic and Process Algebra, A Bisimulation Perspective. CSLI Lectures Notes No. 53. Center for the Study of Language and Information, Stanford University, Stanford, 1995.
- [4] E. CASANOVAS, P. DELLUNDE, R. JANSANA, On Elementary Equivalence for Equality-free Logic, Notre Dame of Formal Logic, vol. 37 (1996), pp. 506-522.
- [5] S. CELANI AND R. JANSANA, A New semantics for Positive Modal Logic, Notre Dame Journal of Formal Logic, 38 (1997), pp. 1-18.
- [6] S. CELANI AND R. JANSANA, Priestley Duality, a Sahlqvist Theorem and a Goldblatt-Thomason Theorem for Positive Modal Logic, Logic Journal of the IGPL, Volume7, Issue 6 (1999), pp. 683-715.
- [7] M. DUNN, Positive Modal Logic, Studia Logica, 55 (1995), pp. 301-317.
- [8] K. FINE, Some connections between elementary and modal logic, in Proceedings of the Third Scandinavian Logic Symposium, Upssala 1973. Amsretdam, North-Holland, 1975.
- [9] R. GOLDBLATT, Mathematics ofModality. CSLI Lectures Notes No. 43. Center for the Study of Language and Information, Stanford University, 1993.
- [10] R. GOLDBLATT, Saturation and the Hennessy-Milner Property, in Modal Logic and Process Algebra, A Bisimulation Perspective. CSLI Lectures Notes No. 53. Center for the Study of Language and Information, Stanford University, Stanford, 1995.
- [11] M. HOLLENBERG, Hennessy-Milner classes and process algebra, inModal Logic and ProcessAlgebra, A Bisimulation Perspective. CSLI Lectures Notes No. 53. Center for the Study of Language and Information, Stanford University, Stanford, 1995.
- [12] N. KURTONINA, M. DE RIJKE, Simulating without Negation, Journal of Logic and Computation, 7 (1997), pp. 501-522.
- [13] M. DE RIJKE, Extending Modal Logic. Doctoral Dissertation. ILLC Dissertation Series 1993-4, University of Amsterdam, Amsterdam, 1993.
- [14] M. DE RIJKE AND H. STURM, Global Definability in Basic Modal Logic. In: H. Wansing, editor, Essays on Non-classical Logic, pages 111-135,World Scientific Publishers, 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0024-0013