Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 111, nr 4 | 413-422
Tytuł artykułu

A Lower Bound of the Second-order Nonlinearities of Boolean Bent Functions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we find a lower bound of the second-order nonlinearities of Boolean bent functions of the form f(x) = [formula], where d1 and d2 are Niho exponents. A lower bound of the second-order nonlinearities of these Boolean functions can also be obtained by using a recent result of Li, Hu and Gao (eprint.iacr.org/2010 /009.pdf). It is shown in Section 3, by a direct computation, that for large values of n, the lower bound obtained in this paper are better than the lower bound obtained by Li, Hu and Gao.
Wydawca

Rocznik
Strony
413-422
Opis fizyczny
Bibliogr. 20 poz., tab.
Twórcy
autor
  • Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee–247667, Uttarakhand, INDIA, gsugata@gmail.com
Bibliografia
  • [1] Canteaut, A., Charpin, P., and Kyureghyan, G. M.: A new class of monomial bent functions, Finite Fields and their Applications, 14(2008), 221-241.
  • [2] Carlet, C.: Recursive lower bounds on the nonlinearity profile of Boolean functions and their applications, IEEE Trans. Inf. Theory, 54(3)(2008), 1262-1272.
  • [3] Carlet, C.: On the nonlinearity profile of the Dillon function, http:// eprint.iacr.org/2009/577.pdf.
  • [4] Carlet, C., Mesnager, S.: Improving the upper bounds on the covering radii of binary Reed Muller codes. IEEE Trans. Inf. Theory, 53(1)(2007), 162-173.
  • [5] Dobbertin, H., Leander, G., Canteaut, A., Carlet, C., Felke, P., Gaborit, P.: Construction of bent functions via Niho power functions, Journal of Combinatorial Theory, Series A 113(2006), 779-798.
  • [6] Dumer, I., Kabatiansky, G., Tavernier, C.: List decoding of second order Reed-Muller codes up to the Johnson bound with almost linear complexity, In: Proceedings of the IEEE International Symposium on Information Theory, Seattle, (2006), 138-142.
  • [7] Fourquet, R., Tavernier, C.: An improved list decoding algorithm for the second order Reed-Muller codes and its applications, Designs Codes Cryptogr., 49(2008), 323-340.
  • [8] Gangopadhyay, S., Sarkar, S., Telang, R.: On the lower bounds of the second-order nonlinearity of some Boolean function, Information. Science, 180(2)(2010), 266-273.
  • [9] Gode, R., Gangopadhyay, S.: On second order nonlinearities of cubic monomial Boolean functions, http: //eprint.iacr.org/2009/502.pdf.
  • [10] Gode, R., Gangopadhyay, S.: Third-order nonlinearities of a subclass of kasami functions, Cryptography. Commun, 2(2010), 69-83.
  • [11] Gode, R., Gangopadhyay, S.: On lower bounds of second-order nonlinearities of cubic bent functions constructed by concatenating Gold functions, Accepted in International Journal of Computer Mathematics, 2011.
  • [12] Kabatiansky, G., Tavernier, C.: List decoding of second order Reed-Muller codes, In : Proceedings of the Eighteen International Symposium of Communication Theory and Applications, Ambleside, UK, 2005.
  • [13] Knudsen, L. R., Robshaw, M. J. B.: Non-linear approximations in linear cryptanalysis, In : Proceedings EUROCRYPT'96 (Lecture Notes in Computer Science), Berlin, Germany: Springer-Verlag, 1070(1996), 224-236.
  • [14] Li, X., Hu, Y., Gao, J.: The lower bounds on the second order nonlinearity of cubic Boolean functions, http: // eprint.iacr.org/2010/009.pdf.
  • [15] Lidi, R., Niederreiter, H.: Introduction to finite fields and their applications, North-Holland, Amsterdam, 1994.
  • [16] Macwilliams, F. J., Solane, N. J. A.: The theory of Error-correcting Codes, Amsterdam: North-Holland Publishing Company, 1978.
  • [17] Rothaus, O. S.: On bent functions, Journal of Combinatorial Theory, 20(A)(1976), 300-305.
  • [18] Sun, G., Wu, C.: The lower bounds on the second order nonlinearity of three classes of Boolean functions with high nonlinearity, Information Sciences, 179 (3)(2009), 267-278.
  • [19] Sun, G., Wu, C.: The lower bound on the second-order nonlinearity of a class of Boolean function with high nonlinearity, Appl. Algebra Engrg. Comm. Comput. (AAECC), 22(2011), 37-45.
  • [20] K. Szymiczek, Bilinear Algebra: An Introduction to the Algebraic Theory of Quadratic Forms, Algebra, Logic and Applications, 7(1997) Gordon & Breach Science Publishers.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0021-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.