Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 111, nr 4 | 357-371
Tytuł artykułu

Reduction Techniques for Acyclic Cover Transducers

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finite languages and finite subsequential functions can be represented by possibly cyclic finite machines, respectively called cover automata and cover transducers. Reduced cover machines can have fewer states than the corresponding minimal machines, yielding a compact representation for lexicons or dictionaries. We present here a new algorithm for reducing the number of states of an acyclic transducer.
Wydawca

Rocznik
Strony
357-371
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Addison-Wesley, 1983.
  • [2] M.-P. Béal and O. Carton. Computing the prefix of an automaton. RAIRO Theoret. Informatics Appl., 34(6):503-514, 2000. IGM Report 2000-08.
  • [3] J. Berstel. Transductions and Context-Free Languages, volume 38 of Leitfäden der angewandtenMathematik und Mechanik LAMM. Teubner, 1979.
  • [4] C. Câmpeanu, A. Pǎun, and S. Yu. An efficient algorithm for constructing minimal cover automata for finite languages. Int. J. Found. Comput. Sci., 13(1):83-97, 2002.
  • [5] C. Câmpeanu, N. Sântean, and S. Yu. Minimal cover-automata for finite languages. In WIA '98, volume 1660 of Lecture Notes in Computer Science, pages 43-56. Springer-Verlag, 1998.
  • [6] C. Câmpeanu, N. Sântean, and S. Yu. Minimal cover-automata for finite languages. Theor. Comput. Sci., 267(1-2):3-16, September 2001.
  • [7] J.-M. Champarnaud, F. Guingne, and J. Farré. Reducing acyclic cover transducers. In Jan Holub and Jan Zdárek, editors, CIAA, volume 4783 of Lecture Notes in Computer Science, pages 38-50. Springer, 2007.
  • [8] J.-M. Champarnaud, F. Guingne, and G. Hansel. Cover transducers for functions with finite domain. Int. J. Found. Comput. Sci., 16(5):851-865, 2005.
  • [9] J.-M. Champarnaud, F. Guingne, and G. Hansel. Similarity relations and cover automata. RAIRO Theoret. Informatics Appl., 39(1):115-123, January 2005.
  • [10] Ch. Choffrut. Contribution `a l'étude de quelques familles remarquables de fonctions rationnelles. Thèse d'état, Université Paris 7, 1978. Mathématiques.
  • [11] Ch. Choffrut. Minimizing subsequential transducers: a survey. Theor. Comput. Sci., 292(1):131-143, January 2003.
  • [12] C. Dwork and L. Stockmeyer. A time complexity gap for two-way probabilistic finite-state automata. SIAMJC, 19:1011-1023, 1990.
  • [13] J. Kaneps and R. Freivalds. Running time to recognize nonregular languages by 2-way probabilistic automata. In J. Leach Albert, B. Monien, and M. Rodr´ıguez Artalejo, editors, ICALP91, volume 510 of Lecture Notes in Computer Science, pages 174-185. Springer Verlag, 1991.
  • [14] H. Körner. A time and space efficient algorithm for minimizing cover automata for finite languages. Int. J. Found. Comput. Sci., 14(6):1071-1086,December 2003.
  • [15] M. Mohri. Minimization algorithms for sequential transducers. Theor. Comput. Sci., 234(1-2):177-201, March 2000.
  • [16] R. Paige and R. Endre Tarjan. Three partition refinement algorithms. SIAMJ. Comput., 16(6):973-989, 1987.
  • [17] A. Pǎun, N. Sântean, and S. Yu. An O(n2) algorithm for constructing minimal cover automata for finite languages. In A. Pǎun and S. Yu, editors, CIAA2000, volume 2088 of Lecture Notes in Computer Science, pages 243-251. Springer Verlag, 2001.
  • [18] M.-P. Schützenberger. Sur une variante des fonctions séquentielles. Theor. Comput. Sci., 4(1):47-57, 1977
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0021-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.