Czasopismo
2011
|
Vol. 108, nr 3/4
|
337-369
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a general framework for the study of fuzzy rough approximation operators determined by a triangular norm in infinite universes of discourse is investigated. Lower and upper approximations of fuzzy sets with respect to a fuzzy approximation space in infinite universes of discourse are first introduced. Essential properties of various types of T -fuzzy rough approximation operators are then examined. An operator-oriented characterization of fuzzy rough sets is also proposed, that is, T -fuzzy rough approximation operators are defined by axioms. Different axiom sets of upper and lower fuzzy set-theoretic operators guarantee the existence of different types of fuzzy relations which produce the same operators. A comparative study of T -fuzzy rough set algebras with some other mathematical structures are presented. It is proved that there exists a one-to-one correspondence between the set of all reflexive and T -transitive fuzzy approximation spaces and the set of all fuzzy Alexandrov spaces such that the lower and upper T -fuzzy rough approximation operators are, respectively, the fuzzy interior and closure operators. It is also shown that a reflexive fuzzy approximation space induces a measurable space such that the family of definable fuzzy sets in the fuzzy approximation space forms the fuzzy -algebra of the measurable space. Finally, it is explored that the fuzzy belief functions in the Dempster-Shafer of evidence can be interpreted by the T -fuzzy rough approximation operators in the rough set theory, that is, for any fuzzy belief structure there must exist a probability fuzzy approximation space such that the derived probabilities of the lower and upper approximations of a fuzzy set are, respectively, the T -fuzzy belief and plausibility degrees of the fuzzy set in the given fuzzy belief structure.
Czasopismo
Rocznik
Tom
Strony
337-369
Opis fizyczny
Bibliogr. 85 poz.
Twórcy
autor
- School ofMathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, P. R. China, wuwz@zjou.edu.cn
Bibliografia
- [1] Arenas, F. G.: Alexandroff spaces, Acta Mathematica Universitatis Comenianae, 68, 1999, 17-25.
- [2] Biacino, L.: Fuzzy subsethood and belief functions of fuzzy events, Fuzzy Sets and Systems, 158, 2007, 38-49.
- [3] Boixader, D., Jacas, J., Recasens, J.: Upper and lower approximations of fuzzy sets, International Journal of General Systems, 29, 2000, 555-568.
- [4] Chang, C. L.: Fuzzy topological spaces, Journal of Mathematical Analysis and Applications, 24, 1968, 182-189.
- [5] Chen, D. G., Yang,W. X., Li, F. C.: Measures of general fuzzy rough sets on a probabilistic space, Information Sciences, 178, 2008, 3177-3187.
- [6] Choquet, G.: Theory of capacities, Annales de l'institut Fourier, 5, 1954, 131-295.
- [7] Chuchro, M.: On rough sets in topological Boolean algebras, in: Rough Sets, Fuzzy Sets and Knowledge Discovery (W. Ziarko, Ed.), Springer-Verlag, Berlin, 1994, 157-160.
- [8] Chuchro, M.: A certain conception of rough sets in topological Boolean algebras, Bulletin of the Section of Logic, 22(1), 1993, 9-12.
- [9] Cock, M. D., Cornelis, C., Kerre, E. E.: Fuzzy rough sets: The forgotten step, IEEE Transactions on Fuzzy Systems, 15(1), 2007, 121-130.
- [10] Comer, S.: An algebraic approach to the approximation of information, Fundamenta Informaticae, 14, 1991, 492-502.
- [11] Dempster, A. P.: Upper and lower probabilities induced by a multivalued mapping, Annals of Mathematical Statistics, 38, 1967, 325-339.
- [12] Denoeux, T.: Modeling vague beliefs using fuzzy-valued belief structures, Fuzzy Sets and Systems, 116, 2000, 167-199.
- [13] Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems, 17, 1990, 191-209.
- [14] Dubois, D., Prade, H.: Evidence measures based on fuzzy information, Automatica, 21, 1985, 547-562.
- [15] Dubois, D., Prade, H.: Properties of measures of information in evidence and possibility theory, Fuzzy Sets and Systems, 24, 1987, 161-182.
- [16] Dubois, D., Yager, R. R.: Fuzzy set connectives as combinations of belief structures, Information Sciences, 66, 1992, 245-275.
- [17] Halmos, P. R.: Measure Theory, Van Nostrand-Reinhold, New York, 1950.
- [18] Hu, Q. H., Xie, Z. X., Yu, D. R.: Hybrid attribute reduction based on a novel fuzzy rough model and information granulation, Pattern Recognition, 40, 2007, 3509-3521.
- [19] Hu, Q. H., Yu, D. R., Xie, Z. X.: Information-preserving hybrid data reduction based on fuzzy-rough techniques, Pattern Recognition Letters, 27, 2006, 414-423.
- [20] Ishizuka, M., Fu, K. S., Yao, J. T. P.: Inference procedures and uncertainty for problem-reduction method, Information Sciences, 28, 1982, 179-206.
- [21] Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection, IEEE Transactions on Fuzzy Systems, 15, 2007, 73-89.
- [22] Klement, E. P.: Fuzzy _-algebras and fuzzy measurable functions, Fuzzy Sets and Systems, 4, 1980, 83-93.
- [23] Klir, G. J.: A principle of uncertainty and information invariance, International Journal of General Systems, 17, 1990, 249-275.
- [24] Klir, G. J., Yuan, B.: Fuzzy Logic: Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1995.
- [25] Kondo, M.: On the structure of generalized rough sets, Information Sciences, 176, 2006, 586-600.
- [26] Kortelainen, J.: On relationship between modified sets, topological space and rough sets, Fuzzy Sets and Systems, 61, 1994, 91-95.
- [27] Lai, H., Zhang, D.: Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems, 157, 2006, 1865-1885.
- [28] Li, T. J., Zhang, W. X.: Rough fuzzy approximations on two universes of discourse, Information Sciences, 178(3), 2008, 892-906.
- [29] Lin, T. Y., Liu, Q.: Rough approximate operators: axiomatic rough set theory, in: Rough Sets, Fuzzy Sets and Knowledge Discovery (W. Ziarko, Ed.), Springer, Berlin, 1994, 256-260.
- [30] Lingras, P. J., Yao, Y. Y.: Data mining using extensions of the rough set model, Journal of the American Society for Information Science, 49, 1998, 415-422.
- [31] Lowen, R.: Fuzzy topological spaces and fuzzy compactness, Journal of Mathematical Analysis and Applications, 56, 1976, 621-633.
- [32] Lucas, C., Araabi, B. N.: Generalization of the Dempster-Shafer theory: A fuzzy-valued measure, IEEE Transactions on Fuzzy Systems, 7(3), 1999, 255-270.
- [33] Mi, J.-S., Leung, Y., Zhao, H.-Y., Feng, T.: Generalized fuzzy rough sets determined by a triangular norm, Information Sciences, 178, 2008, 3203-3213.
- [34] Mi, J.-S., Zhang, W.-X.: An axiomatic characterization of a fuzzy generalization of rough sets, Information Sciences, 160, 2004, 235-249.
- [35] Morsi, N. N., Yakout,M. M.: Axiomatics for fuzzy rough sets, Fuzzy Sets and Systems, 100, 1998, 327-342.
- [36] Naturman, C. A.: Interior Algebras and Topology, Ph.D. Thesis, Department of Mathematics, University of Cape Town, 1991.
- [37] Ogawa, H., Fu, K. S.: An inexact inference for damage assessment of existing structures, International Journal of Man-Machine Studies, 22, 1985, 295-306.
- [38] Pawlak, Z.: Rough sets, International Journal of Computer and Information Sciences, 11, 1982, 341-356.
- [39] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning aboutData, Kluwer Academic Publishers, Boston, 1991.
- [40] Pawlak, Z., Skowron, A.: Rudiments of rough sets, Information Sciences, 177, 2007, 3-27.
- [41] Pawlak, Z., Skowron, A.: Rough sets: Some extensions, Information Sciences, 177, 2007, 28-40.
- [42] Qin, K. Y., Pei, Z.: On the topological properties of fuzzy rough sets, Fuzzy Sets and Systems, 151, 2005, 601-613.
- [43] Qin, K. Y., Yang, J., Pei, Z.: Generalized rough sets based on reflexive and transitive relations, Information Sciences. 178, 2008, 4138-4141.
- [44] Radzikowska, A. M., Kerre, E. E.: A comparative study of fuzzy rough sets, Fuzzy Sets and Systems, 126, 2002, 137-155.
- [45] Römer, C., Kandel, A.: Constraints on belief functions imposed by fuzzy random variables, IEEE Transactions on Systems, Man, and Cybernetics, 25(1), 1995, 86-99.
- [46] Römer, C., Kandel, A.: Applicability analysis of fuzzy inference by means of generalized Dempster-Shafer theory, IEEE Transactions on Fuzzy Systems, 3(4), 1995, 448-453.
- [47] Shafer, G.: A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976.
- [48] Skowron, A.: The relationship between rough set theory and evidence theory, Bulletin of the Polish Academy of Sciences: Mathematics, 37, 1989, 87-90.
- [49] Skowron, A.: The rough sets theory and evidence theory, Fundamenta Informaticae, 13, 1990, 245-262.
- [50] Skowron, A., Grzymala-Busse, J.: From rough set theory to evidence theory, in: Advance in the Dempster-Shafer Theory of Evidence (R. R. Yager,M. Fedrizzi, J. Kacprzyk, Eds.), Wiley, New York, 1994, 193-236.
- [51] Smets, P.: The degree of belief in a fuzzy event, Information Sciences, 25, 1981, 1-19.
- [52] Smets, P.: The normative representation of quantified beliefs by belief functions, Artificial Intelligence, 92(1-2), 1997, 229-242.
- [53] Smets, P.: The combination of evidence in the transferable belief model, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(5), 1990, 447-458.
- [54] Thiele, H.: On axiomatic characterization of fuzzy approximation operators III--the fuzzy diamond and fuzzy box cases, Proceedings of The 10th IEEE International Conference on Fuzzy Systems, Vol. 2, 2001, 1148-1151.
- [55] Thiele, H.: On axiomatic characterisations of crisp approximation operators, Information Sciences, 129, 2000, 221-226.
- [56] Wang, X. Z., Tsang, E. C. C., Zhao, S. Y., Chen, D. G., Yeung, D. S.: Learning fuzzy rules from fuzzy samples based on rough set technique, Fuzzy Sets and Systems, 177, 2007, 4493-4514.
- [57] Wiweger, R.: On topological rough sets, Bulletin of Polish Academy of Sciences: Mathematics, 37, 1989, 89-93
- [58] Wu, W.-Z.: Attribute reduction based on evidence theory in incomplete decision systems, Information Sciences, 178(5), 2008, 1355-1371.
- [59] Wu, W.-Z., Leung, Y., Mi, J.-S.: On characterizations of (I, T )-fuzzy rough approximation operators, Fuzzy Sets and Systems, 154, 2005, 76-102.
- [60] Wu, W.-Z., Leung, Y., Mi, J.-S.: On generalized fuzzy belief functions in infinite spaces, IEEE Transactions on Fuzzy Systems, 17, 2009, 385-397.
- [61] Wu, W.-Z., Leung, Y., Zhang, W.-X.: On generalized rough fuzzy approximation operators, Transactions on Rough Sets, V, Lecture Notes in Computer Science, Vol. 4100, 2006, 263-284.
- [62] Wu, W.-Z., Leung, Y., Zhang, W.-X.: Connections between rough set theory and Dempster-Shafer theory of evidence, International Journal of General Systems, 31, 2002, 405-430.
- [63] Wu, W.-Z., Mi, J.-S., Zhang, W.-X.: Generalized fuzzy rough sets, Information Sciences, 151, 2003, 263-282.
- [64] Wu, W.-Z., Zhang, W.-X.: Constructive and axiomatic approaches of fuzzy approximation operators, Information Sciences, 159, 2004, 233-254.
- [65] Wu, W.-Z., Zhang, W.-X., Li, H.-Z.: Knowledge acquisition in incomplete fuzzy information systems via rough set approach, Expert Systems, 20, 2003, 280-286.
- [66] Wu, W.-Z., Zhang, M., Li, H.-Z., Mi, J.-S.: Knowledge reduction in random information systems via Dempster-Shafer theory of evidence, Information Sciences, 174, 2005, 143-164.
- [67] Wybraniec-Skardowska, U.: On a generalization of approximation space, Bulletin of the Polish Academy of Sciences: Mathematics, 37, 1989, 51-61.
- [68] Yager, R. R.: Generalized probabilities of fuzzy events from fuzzy belief structures, Information Sciences, 28, 1982, 45-62.
- [69] Yager, R. R.: On the normalization of fuzzy belief structure, International Journal of Approximate Reasoning, 14, 1996, 127-153.
- [70] Yang, X.-P.: Minimization of axiom sets on fuzzy approximation operators, Information Sciences, 177, 2007, 3840-3854.
- [71] Yang, X.-P., Li, T.-J.: The minimization of axiom sets characterizing generalized approximation operators, Information Sciences, 176, 2006, 887-899.
- [72] Yao, Y. Y.: Generalized rough set model, in: Rough Sets in Knowledge Discovery 1. Methodology and Applications (L. Polkowski, A. Skowron, Eds.), Physica-Verlag, Heidelberg, 1998, 286-318.
- [73] Yao, Y. Y.: Constructive and algebraic methods of the theory of rough sets, Journal of Information Sciences, 109, 1998, 21-47.
- [74] Yao, Y. Y., Lingras, P. J.: Interpretations of belief functions in the theory of rough sets, Information Sciences, 104, 1998, 81-106.
- [75] Yao, Y. Y., Lin, T. Y.: Generalization of rough sets using modal logic, Intelligent Automation and Soft Computing, 2, 1996, 103-120.
- [76] Yen, J.: Generalizing the Dempster-Shafer theory to fuzzy sets, IEEE Transactions on Systems, Man, and Cybernetics, 20(3), 1990, 559-570.
- [77] Yen, J.: Computing generalized belief functions for continuous fuzzy sets, International Journal of Approximate Reasoning, 6, 1992, 1-31.
- [78] Yeung, D. S., Chen, D. G., Tsang, E. C. C., Lee, J. W. T., Wang, X. Z.: On the generalization of fuzzy rough sets, IEEE Transactions on Fuzzy Systems, 13(3), 2005, 343-361.
- [79] Zadeh, L. A.: Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1, 1978, 3-28.
- [80] Zadeh, L. A.: Fuzzy sets and information granularity, in: Advances in Fuzzy Set Theory and Applications (M. Gupta, R. Ragade, R. R. Yager, Eds.), North-Holland Publishing Co., Amsterdam, 1979, 3-18.
- [81] Zadeh, L. A.: Probability measures of fuzzy events, Journal of Mathematical Analysis and Applications, 23, 1968, 421-427.
- [82] Zhang, M., Xu, L. D., Zhang, W.-X., Li, H.-Z.: A rough set approach to knowledge reduction based on inclusion degree and evidence reasoning theory, Expert Systems, 20, 2003, 298-304.
- [83] Zhao, S. Y., Tsang, E. C. C.: On fuzzy approximation operators in attribute reduction with fuzzy rough sets, Information Sciences, 178, 2008, 3163-3176.
- [84] Zhao, S. Y., Tsang, E. C. C., Chen, D. G.: The model of fuzzy variable precision rough sets, IEEE Transactions on Fuzzy Systems, 17(2), 2009, 451-467.
- [85] Zhu, W.: Topological approaches to covering rough sets, Information Sciences, 177, 2007, 1499-1508.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0018-0034