Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | Vol. 32, No. 1 | 59-74
Tytuł artykułu

Predrying of stranded wrack material as an aspect of the litterbag techniques in the sandy beach studies

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Methodological aspects of the arrangement of stranded wrack for the degradation rates within the litterbags were tested in a simple field experiment on temperate, fine/medium quartz sediment, sandy beach in Poland at the end of the Hel Peninsula (54°36’N, 18°49’E). Litterbags of the mesh size of 0.5 mm were used to construe and assess the role of the pre-drying of wrack before its placement into the bags. The field station was established on the backshore, 15 m in width seaward from the crest of a dune. Three methods of predrying were done: (1) air drying, (2) oven drying, (3) freeze drying, as well as (4) non-dried fresh material was used as reference. The stranded seagrass wrack (Zostera marina L.), obtained directly from the beach, and then prepared in accordance with the procedures described above, was used as the study material. Four trials were run with five repetitions of litterbags 7 cm long ´ 7 cm wide made from nylon mesh with 0.5 mm aperture widths. After exposition, bags were retrieved 5, 10, 50, 100, 150, 200 and 250 days post-placement. In the laboratory, samples of remaining material were dried by the same method as earlier, respectively, and then weighed, and analysed using a CHNS Analyser. It was shown that, under similar conditions of sediment composition, salinity and wave inundation, the method of predrying had little influence on the long-term process of decay. In the case of non-dried replicates, degradation rapidly proceeded in the initial stages and then stabilised to be linear, whereas, in dried samples it was done so linearly throughout the study period with only little differences. Such differences observed in the early part of the experiment were most likely the result of differences in material structure and the initial chemical composition of the plant material caused by a predrying-incurred disturbance in the chemical structure. Nevertheless, short-term environmentally driven sampling strategies fail to obtain conclusive results about degradation estimates of stranded wrack and should be avoided at least with the use of dried material.
Wydawca

Rocznik
Strony
59-74
Opis fizyczny
Bibliogr. 37 poz., tab., wykr.
Twórcy
  • Department of Environmental Chemistry and Ecotoxicology, Faculty of Chemistry, University of Gdańsk, ul. Jana III Sobieskiego 18/19, 80-952 Gdańsk-Wrzeszcz, Poland, humbak@idea.net.pl
  • Dipartimento di Biologia Animale e Genetica <<Leo Pardi>> University degli Studi di Firenze Via Romana, 17 - 50125 Firenze ITALIA
Bibliografia
  • [1]. Bermingham S., Maltby L., Cooke R.C., 1996, Effects of a coal inine efiluent on aquatic hyphomycetes. I. Field study, J. Appl. Ecol., 33, 1311-1321.
  • [2]. Blum L.K., 1993, Spartina alterniflora root dynamics in a Virginia marsli, Mar. Ecol. Prog. Ser., 102, 169-178.
  • [3]. Buth G.J.C., Voeseneck L.A.C.J., 1987, Decomposition of standing and fallen litter of halophytes in a Dutch salt marsh, [in:] Variation between land and sea, A.H.L. Huiskes, C.W.P.M. Blom, J. Rozema (eds.), W Junk, Dordrecht, 146-162.
  • [4]. Dziadowiec H., 1992, Decomposition of Saxifraga oppisitifolia L. shoots and Deschampsia alpina (L.) R. et S. leaves under conditions of Spitsbergen tundra, Landscape, nature and man in the high Arctic, 177-183.
  • [5]. Emery S.L., Perry J.A., 1996, Decomposition rates and phosphorus concentrations of purple loosestrife (Lythrum salicaria) and cattail (Typka spp.) in fourteen Minnesota Wetlands, Hydrobiologia, 323, 129-138.
  • [6]. Field J. G., Clarke K. R., Warwick R. M., 1982, A practical strategy for analysing multispecies distribution patterns, Mar. Ecol. Prog. Ser., 8, 37-52.
  • [7]. Fowler J., Cohen L. & Jarvis Ph., 1998, Practical statistics for field biology, Second Edition, John Wiley & Sons, Chichester, 260 pp. ISBN 0-471-98295-4
  • [8]. Gallagher J.L., Kibby Kirvin K.W.S., 1984, Detritus processing and mineral cycling in seagrass (Zostera) litter in an Oregon saltmarsh, Aquat. Bot., 20, 97-108.
  • [9]. Harrison P.G., 1989, Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory, Aquat. Bot., 23, 263-288.
  • [10]. Harrison P.G., Mann K.H., 1975a, Chemical changes during the seasonal cycle of growth and decay in. eelgrass (Zostera marina) on the Atlantic coast of Canada, J. Fish. Res. Bd Can., 32, 615-621.
  • [11]. Harrison P.G., Mann K.H., 1975b, Detritus formation from eelgrass (Zostera marina): the relative effects of fragmentation, leaching and decay, Limnol. Oceanogr., 20, 924-934.
  • [12]. Inglis G., 1989, The colonisation and degradation of stranded Macrocystis pyrifera (L.) C. Ag. by the macrofauna of a New Zealand sandy beach, J. Exp. Mar. Biol. Ecol., 125, 203-217.
  • [13]. Jenny H., Gessel S.P., Bringham F.T., 1949, Comparative study of decomposition rates of organie matter in temperate and tropical regions, Soil Sci., 68, 419-432.
  • [14]. Jędrzejczak M. F., 1999, The degradation of stranded carrion on a Baltic Sea sandy beczeli, Oceanol. Stud., 28 (3)-(4), 109-141.
  • [15]. Jędrzejczak M. F., 2002a, Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland): a short-term pilot study. Part I. Driftline effects of fragmented detritivory, leaching and decay rates, Oceanologia, 44 (2), 273-286.
  • [16]. Jędrzejczak M. F., 2002b, Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland): a short-term pilot study. Part II. Driffline effects of succession changes and colonisation by beach fauna, Oceanologia, 44 (3), 367-387.
  • [17]. Jędrzejczak M. F., 2002c, Spatio-temporal decay `hot spots' of stranded wrack in a Baltic sondy coastal system. Part I. Comparative study on pattern: 1 type of wrack vs 3 beach sites, Oceanologia 44(4), 491-512.
  • [18]. Josselyn J.M., Mathieson A.C., 1980, Seasonal influx and decomposition of autochthonous mac rophyte litter in a north temperate estuary, Hydrobiologia, 71, 197-208.
  • [19]. Kenworthy W.J., Thayer G.W., 1984, Production and decomposition of the roots and rhizomes of seagrasses, Zostera marina and Thalassia testudinum, in temperate cmd subtropical marine ecosystems, Bull. Mar. Sci., 35, 364-379.
  • [20]. Newell S.Y., Fallon R.D., 1989, Litterbags, lea f tags, and decay ofnonabscised intertidal leaves, Can. J. Bot., 67, 2324-2327.
  • [21]. Newell S.Y., Fell J.W., Statzell-Tallman A., Miller C., Cefalu R., 1984, Carbon and nitrogen dynamics in decomposing leaves of three coastal marine vascularplants of the subtropics, Aquat. Bot., 19, 183-192.
  • [22]. Park D., 1974, On the use of the litterbag method for studying degradation in aquatic habitats, Int. Biodeterior. Bull., 10, 45-48.
  • [23]. Pelikaan G.C., 1984, Laboratory experiments on eelgrass (Zostera marina) decomposition, Neth. J.Sea Res., 18, 360-383.
  • [24]. Petterson R.C., Cummins K.W., 1974, Heat processes in woodland streams, Freshwat. Biol., 4, 343-368.
  • [25]. Robertson A.L, Mann K., 1980, The role of isopods and amphipods in the initial fragmentation of eelgrass detritus in Nova Scotia, Canada, Mar. Biol., 59, 63-69.
  • [26]. Singh N., Steinke T.D., Lawton J.R., 1991, Morphological changes and the associated fungal colonization during decomposition of leaves of a mangrove, Bruguiera gymnorrhiza (Rhizophoraceae), S. Afr. J. Bot., 57, 151-155.
  • [27]. StatSoft Inc., 1995, STATISTICA for Windows [Computer program manuał], Tulsa, OK: StatSoft, Inc., 2325 East 13th Street, Tulsa, OK, 74104, (918) 583-4149, fax: (918) 583-4376, e-mail: info@statsoft.com, WEB: http://w w w.statsoft.com.
  • [28]. St. John T.V., 1980, Influence of litterbags on growth of fungal vegetative structures, Oecologia, 46, 130-132.
  • [29]. Swift J.M., Heal 0.W., Anderson J.M., 1979, Decomposition in terrestrial ecosystems, Studies in Ecology 5, Blackwell, Oxford, 372pp.
  • [30]. Underwood A. J., 1981, Techniques of analysis of variance in experimental marine biology and ecology, Oceanogr. Mar. Biol. Ann. Rev., 19, 513-605.
  • [31]. Valiela I., Teal J.M., Allen S.D., Van Etten R., Goehringer D., Volkmann S., 1985, Decomposition in salt marsh ecosystems: the phases and major factors affecting di.sappearance of above-ground organie rnatter, J. Exp. Mar. Biol. Ecol., 89, 29-54.
  • [32]. van der Valk A.G., Attiwill P.M., 1983, Above- and below-ground litter decomposition in an Australian salt nzarsh, Australian J. Ecol., 8, 441-447.
  • [33]. Verhoeven J.T.A., Toth E., 1995, Decomposition of Carex and Sphagnum litter fens: effect of litter quality and inhibition by Living tissue homogenates, Soil Biology and Biochemistry, 27, 271-275.
  • [34]. Wachendorf C., Irmler U., Blume H.P., 1997, Relationships between litter fauna and chemical changes of litter during decomposition under different moisture conditions, [in:] Plant litter quality and decomposition. Driven by Nature, G. Cadish, K.E. Giller (eds.), CAB International, Wallingford - Oxon, 135-144.
  • [35]. Wieder R.K., Lang G.E., 1982, A critique of the analytical methods used in examining decomposition data obtained from litter bags, Ecology, 63, 1636-1642.
  • [36]. Williams S.L., 1984, Decomposition of the tropical macroalga Caulerpa cupressoides (West) C. Agardh.: field and laboratory studies, J. Exp. Mar. Biol. Ecol., 80, 109-124.
  • [37]. Zar J. H., 1999, Biostatistical Analysis. Fourth Edition, Prentice-Hall International, Inc., New Jersey, 663 pp. + 212 app. ISBN 0-13-082390-2.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0013-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.