Czasopismo
2011
|
Vol. 51, [Z] 1
|
99-107
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A normal pseudo-BCK-algebra X is an algebra in which every subalgebra of X is an ideal of X. Characterizations of normal pseudo-BCK-algebras are given.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
99-107
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Faculty of Mathematics and Natural Sciences, The John Paul II Catholic University of Lublin Konstantynów 1H, 20-708 Lublin, Poland, gdymek@o2.pl
Bibliografia
- [1] G. Dymek and A. Walendziak, Fuzzy ideals of pseudo-BCK algebras, Demonstr. Math., to appear.
- [2] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS'01: Combinatorics, Computability and Logic, Springer, London, 2001, 97-114.
- [3] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BLalgebras, Abstracts of The Fifth International Conference FSTA 2000, Slovakia, February 2000, 90-92.
- [4] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MValgebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, Bucharest, Romania, May (1999), 961-968.
- [5] R. Halaš, J. Kühr, Deductive systems and annihilators of pseudo-BCK-algebras, Ital. J. Pure Appl. Math. 25 (2009).
- [6] W. Huang and Y. B. Jun, Ideals and subalgebras in BCI algebras, South. Asian Bull. Math. 26 (2002), 567-573.
- [7] Y. Imai, K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19-22.
- [8] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE, Bucharest, 2008.
- [9] A. Iorgulescu, Classes of pseudo-BCK algebras, Part I, Journal of Multiplae-Valued Logic and Soft Computing 12 (2006), 71-130.
- [10] A. Iorgulescu, Classes of pseudo-BCK algebras, Part II, Journal of Multiplae-Valued Logic and Soft Computing 12 (2006), 575-629.
- [11] Y. B. Jun, Characterizations of pseudo-BCK algebras, Scientiae Mathematicae Japonicae 57 (2003), 265-270.
- [12] Y. B. Jun, H. S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39-46.
- [13] J. Meng, S. M. Wei and Y. B. Jun, Normal BCI/BCK algebras, Comm. Korean Math. Soc. 9 (1994), 265-270.
- [14] A. Walendziak, On axiom systems of pseudo-BCK algebras, Bull. Malaysian Math. Sci. Soc. 34 (2011), 287-293.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0012-0017