Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 50, [Z] 2 | 161-174
Tytuł artykułu

Unconditional convergence in lattice groups with respect to ideals

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We deal with unconditional convergence of series and some special classes of subsets of N.
Wydawca

Rocznik
Strony
161-174
Opis fizyczny
Bibliogr.
Twórcy
autor
  • Department of Mathematics and Computer Sciences, University of Perugia via Vanvitelli 1, I-06123 Perugia, Italy, boccuto@yahoo.it
Bibliografia
  • [1] A. Aizpuru and M. Nicasio-Llach, About the statistical uniform convergence, Bull. Braz. Math. Soc. 39 (2008), 173-182.
  • [2] A. Aizpuru, M. Nicasio-Llach and F. Rambla-Barreno, A Remark about the Orlicz-Pettis Theorem and the Statistical Convergence, Acta Math. Sinica, English Ser. 26 (2) (2010), 305-31.
  • [3] P. Antosik and C. Swartz, Matrix methods in Analysis, Lecture Notes in Mathematics 1113 Springer-Verlag, 1985.
  • [4] S. J. Bernau, Unique representation of Archimedean lattice group and normal Archimedean lattice rings, Proc. Lond. Math. Soc. 15 (1965), 599-631.
  • [5] A. Boccuto, Egorov property and weak _-distributivity in l-groups, Acta Math. (Nitra) 6 (2003), 61-66.
  • [6] A. Boccuto, X. Dimitriou and N. Papanastassiou, Basic matrix theorems for I-convergence in (l)-groups, Technical Report 2010/6, Mathematical Department, University of Perugia, submitted.
  • [7] A. Boccuto, X. Dimitriou and N. Papanastassiou, Countably additive restrictions and limit theorems in (l)-groups, Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia (2010), to appear.
  • [8] A. Boccuto and N. Papanastassiou, Schur and Nikod´ym convergence-type theorems in Riesz spaces with respect to the (r)-convergence, Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 55 (2007), 33-46.
  • [9] A. Boccuto, B. Riečan and M. Vrábelová, Kurzweil-Henstock Integral in Riesz Spaces, Bentham Science Publ., e-book, 2009.
  • [10] A. Boccuto and V. A. Skvortsov, Some applications of the Maeda-Ogasawara-Vulikh representation theorem to Differential Calculus in Riesz spaces, Acta Math. (Nitra) 9 (2006), 13-24; Addendum to: Some applications of the Maeda-Ogasawara-Vulikh representation theorem to Differential Calculus in Riesz spaces", ibidem 12 (2009), 39-46.
  • [11] R. Demarr, Order convergence and topological convergence, Proc. Amer. Math. Soc. 16 (4) (1965), 588-590.
  • [12] P. Kostyrko, T. šalát and W. Wilczynski, I-convergence, Real Anal. Exch. 26 (2000/2001), 669-685.
  • [13] R. May and C. McArthur, Comparison of two types of order convergence with topological convergence in an ordered topological vector space, Proc. Amer. Math. Soc. 63 (1) (1977), 49-55.
  • [14] B. Riečan and T. Neubrunn, Integral, Measure and Ordering, Kluwer Academic Publishers/Ister Science, Dordercht/Bratislava, 1997.
  • [15] B. Riečan and P. Volauf, On a technical lemma in lattice ordered groups, Acta Math. Univ. Comenian. 44/45 (1984), 31-36.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0012-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.