Warianty tytułu
Języki publikacji
Abstrakty
We deal with unconditional convergence of series and some special classes of subsets of N.
Czasopismo
Rocznik
Tom
Strony
161-174
Opis fizyczny
Bibliogr.
Twórcy
autor
autor
autor
- Department of Mathematics and Computer Sciences, University of Perugia via Vanvitelli 1, I-06123 Perugia, Italy, boccuto@yahoo.it
Bibliografia
- [1] A. Aizpuru and M. Nicasio-Llach, About the statistical uniform convergence, Bull. Braz. Math. Soc. 39 (2008), 173-182.
- [2] A. Aizpuru, M. Nicasio-Llach and F. Rambla-Barreno, A Remark about the Orlicz-Pettis Theorem and the Statistical Convergence, Acta Math. Sinica, English Ser. 26 (2) (2010), 305-31.
- [3] P. Antosik and C. Swartz, Matrix methods in Analysis, Lecture Notes in Mathematics 1113 Springer-Verlag, 1985.
- [4] S. J. Bernau, Unique representation of Archimedean lattice group and normal Archimedean lattice rings, Proc. Lond. Math. Soc. 15 (1965), 599-631.
- [5] A. Boccuto, Egorov property and weak _-distributivity in l-groups, Acta Math. (Nitra) 6 (2003), 61-66.
- [6] A. Boccuto, X. Dimitriou and N. Papanastassiou, Basic matrix theorems for I-convergence in (l)-groups, Technical Report 2010/6, Mathematical Department, University of Perugia, submitted.
- [7] A. Boccuto, X. Dimitriou and N. Papanastassiou, Countably additive restrictions and limit theorems in (l)-groups, Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia (2010), to appear.
- [8] A. Boccuto and N. Papanastassiou, Schur and Nikod´ym convergence-type theorems in Riesz spaces with respect to the (r)-convergence, Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 55 (2007), 33-46.
- [9] A. Boccuto, B. Riečan and M. Vrábelová, Kurzweil-Henstock Integral in Riesz Spaces, Bentham Science Publ., e-book, 2009.
- [10] A. Boccuto and V. A. Skvortsov, Some applications of the Maeda-Ogasawara-Vulikh representation theorem to Differential Calculus in Riesz spaces, Acta Math. (Nitra) 9 (2006), 13-24; Addendum to: Some applications of the Maeda-Ogasawara-Vulikh representation theorem to Differential Calculus in Riesz spaces", ibidem 12 (2009), 39-46.
- [11] R. Demarr, Order convergence and topological convergence, Proc. Amer. Math. Soc. 16 (4) (1965), 588-590.
- [12] P. Kostyrko, T. šalát and W. Wilczynski, I-convergence, Real Anal. Exch. 26 (2000/2001), 669-685.
- [13] R. May and C. McArthur, Comparison of two types of order convergence with topological convergence in an ordered topological vector space, Proc. Amer. Math. Soc. 63 (1) (1977), 49-55.
- [14] B. Riečan and T. Neubrunn, Integral, Measure and Ordering, Kluwer Academic Publishers/Ister Science, Dordercht/Bratislava, 1997.
- [15] B. Riečan and P. Volauf, On a technical lemma in lattice ordered groups, Acta Math. Univ. Comenian. 44/45 (1984), 31-36.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0012-0007