Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 50, [Z] 1 | 87-101
Tytuł artykułu

Multivalent Harmonic Functions defined by m-tuple Integral operators

Autorzy
Wydawca

Rocznik
Strony
87-101
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
Bibliografia
  • [1] B.C. Carlson and D.B. Shaffer, Starlike and prestarlike hyprgeometric functions, SIAMJ. Math. Anal. 15 (1984), 737-745.
  • [2] E.M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc.(Ser.2) 46 (1940), 389-408.
  • [3] H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limlted and John Wiley & Sons) New York, Chichester,Toronto.
  • [4] H. Bateman, A. Erd´elyi, W. Magnus, F. Oberhettinger, F.G. Ticomi (Eds.), Higher Transcendental Functions, Vol. 1, MaGraw-Hill, New York, 1953.
  • [5] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
  • [6] L.J. Slater, Generalized Hypergeometric functions, Cambridge Univ. Press, London 1966.
  • [7] O.P. Ahuja and J.M. Jahangiri, On a linear combination of multivalently harmonic functions, Kyungpook Math. J. 42 (2002), 61-71.
  • [8] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic starlike functions, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, 55(1) (2001), 1-13.
  • [9] O.P. Ahuja and J.M. Jahangiri, Errata to Multivalent harmonic starlike function, Ann.Univ.Mariae Curie-Sklodowska, Vol.LV,1 Sectio A 56(1) (2002), 105.
  • [10] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic convex functions, submited for publication.
  • [11] O.P. Ahuja and S.B. Joshi and A. Swaminathan, Multivalent Harmonic Convolution Operators Associated With Generalized Hypergeometric Functions, submitted for publication.
  • [12] O.P. Ahuja and H. Silverman, Inequalities Associating Hypergeometric functions with Planer Harmonic Mapping, J. Ineq. Pure Appl. Math. 5(4) Art.99, 2004.
  • [13] O.P. Ahuja, Harmonic Starlikeness and Convexity of Integral Operators generated by hypergeometric Series, Integral Transforms and Special Functions (2009), 1-13.
  • [14] O.P. Ahuja, Interconnectivity of Hohlov-Type Harmonic Convolution Operators with the Harmonic Starlike Mapping, to appear.
  • [15] P. Duren, W. Hengartner and R.S. Laugesen, The Argument Principle for Harmonic Functions, Amer. Math. Monthly, 103 (1996), 411-415.
  • [16] V.S. Kriyakova, Generalized Fractional Calculas and Applications, Pitman Research Notes in Math. Series, 301, Longman, Harlow (U.K.) 1994.
  • [17] V.S. Kriyakova, M. Saigo, S. Owa, Study on differential operator and Integral operators in Univalent Function Theory, Res. Inst. Math. Sci. Kyoto Seminar, March 3-5 (2003), 12-30.
  • [18] V.S. Kriyakova, M. Saigo and H.M. Srivastava, Fract. Calc. Appl. Anal. 1, No. 1, 1998, 79-104.
  • [19] Yu. F. Hovlov, Convolution operators preserving univalent functions, Pliska Stud. Math. Bulgar. 10 (1989), 87-92.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0011-0082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.