Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 49, [Z] 2 | 189-208
Tytuł artykułu

On the rates of convergence of Chlodovsky-Kantorovich operators and their Bézier variant

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper we consider the Bézier variant of Chlodovsky- Kantorovich operators Kn-1,af for functions f measurable and locally bounded on the interval [0,1). By using the Chanturiya modulus of variation we estimate the rate of pointwise convergence of Kn-1,af(x) at those x > 0 at which the one-sided limits f(x+) , f(x-) exist.
Wydawca

Rocznik
Strony
189-208
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University Umultowska 87, 61-614, Poznan, Poland, ppych@amu.edu.pl
Bibliografia
  • [1] O. Agratini, An approximation process of Kantorovich type. Math. Notes (Miskolc) 2, no. 1 (2001), 3-10.
  • [2] P. Bézier, Numerical Control Mathematics and Applications, Wiley, London, 1972.
  • [3] P.L. Butzer and H. Karsli, Voronovskaya-type theorems for derivatives of the Bernstein- Chlodovsky polynomials and the Szasz-Mirakyan operator, Comment. Math. 49(1) (2009), 33-57.
  • [4] Z. A. Chanturiya, Modulus of variation of functions and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR 214 (1974) , 63-66.
  • [5] I. Chlodovsky, Sur le développement des fonctions définies dans un intervalle infini en séries de polynomes de M. S. Bernstein, Compositio Math. 4 (1937), 380-393.
  • [6] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics 9, New York 1987.
  • [7] M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl. 5, no. 1 (1989), 105-127.
  • [8] N. Ispir, A. Aral, O. Do˘gru, On Kantorovich process of a sequence of the generalized linear positive operators, Numer. Funct. Anal. Optim. 29, no. 5-6, (2008), 574-589.
  • [9] L. Kantorovich, Sur certains développements suivant les polynomes de la forme de S.Bernstein, I.II , C. R. Acad. Sci. URSS (1930), 563-568, 595-600.
  • [10] M. R. Lagrange, Sur les oscillations d'ordre supérieur d'une fonction numerique, Ann. Sc. Econ. Norm. Sup., Sér. 3(82) (1965), 101-130.
  • [11] G.G. Lorentz, Bernstein Polynomials, University of Toronto Press,Toronto, 1953.
  • [12] P. Pych-Taberska, On the rate of pointwise convergence of Bernstein and Kantorovic polynomials, Functiones et Approximatio 16 (1988), 63-76.
  • [13] P. Pych-Taberska, Some properties of the Bézier-Kantorovich type operators, J. Approx. Theory 123 (2003), 256-269.
  • [14] P. Pych-Taberska, Rates of convergence of Chlodovsky-Kantorovich polynomials in the classes of locally integrable functions, Discussiones Mathematicae: Differential Inclusions, Control and Optimization 29 (2009), 53-66.
  • [15] P. Pych-Taberska and H. Karsli, On the rates of convergence of Bernstein-Chlodovsky polynomials and their Bézier-type variants, Applicable Analysis (2009), to appear.
  • [16] X. M. Zeng, Bounds for Bernstein basis functions and Meyer-König-Zeller basis functions, J. Math. Anal. Appl. 219 (1998), 364-376.
  • [17] X.M. Zeng and A. Piriou, On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, J. Approx. Theory 95 (1998), 369-387.
  • [18] X.M. Zeng, On the rate of convergence of two Bernstein-Bézier type operators for bounded variation function, II, J. Approx. Theory 104 (2000), 330-344.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0011-0073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.