Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 105, nr 1/2 | 163-187
Tytuł artykułu

Combining Satisfiability Procedures for Unions of Theories with a Shared Counting Operator

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present some decidability results for the universal fragment of theories modeling data structures and endowed with arithmetic constraints. More precisely, all the theories taken into account extend a theory that constrains the function symbol for the successor. A general decision procedure is obtained, by devising an appropriate calculus based on superposition. Moreover, we derive a decidability result for the combination of the considered theories for data structures and some fragments of arithmetic by applying a general combination schema for theories sharing a common subtheory. The effectiveness of the resulting algorithm is ensured by using the proposed calculus and a careful adaptation of standard methods for reasoning about arithmetic, such as Gauss elimination, Fourier-Motzkin elimination and Groebner bases computation.
Wydawca

Rocznik
Strony
163-187
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
Bibliografia
  • [1] Armando, A., Bonacina, M.-P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures, ACM Transactions on Computational Logic, 10(1), 2009.
  • [2] Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures, Information and Computation, 183(2), 2003, 140-164.
  • [3] Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification, Journal of Logic and Computation, 4(3), 1994, 217-247.
  • [4] Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on Demand in SAT Modulo Theories, Proc.of LPAR'06, 4246, Springer, 2006.
  • [5] Bonacina, M. P., Echenim, M.: On Variable-inactivity and Polynomial T-Satisfiability Procedures, Journal of Logic and Computation, 18(1), 2008, 77-96.
  • [6] Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T. A., Ranise, S., van Rossum, P., Sebastiani, R.: Efficient Theory Combination via Boolean Search, Information and Computation, 204(10), 2006, 1493-1525.
  • [7] Bradley, A., Manna, Z.: The Calculus of Computation - Decision Procedures with Applications to Verification, Springer, 2007.
  • [8] Bryant, R. E., Lahiri, S. K., Seshia, S. A.: Modeling and Verifying Systems Using a Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted Functions, Proc. of CAV'02, 2404, Springer, 2002.
  • [9] Buchberger, B.: A Theoretical Basis for the Reduction of Polynomials to Canonical Forms, ACM SIGSAM Bull., 10(3), 1976, 19-29.
  • [10] Dershowitz, N., Plaisted, D.: Rewriting, in: Handbook of Automated Reasoning (A. Robinson, A. Voronkov, Eds.), vol. I, chapter 9, Elsevier Science, 2001, 535-610.
  • [11] Enderton, H. B.: A Mathematical Introduction to Logic, Academic Press, New York-London, 1972.
  • [12] Ghilardi, S.: Model Theoretic Methods in Combined Constraint Satisfiability, Journal of Automated Reasoning, 33(3-4), 2004, 221-249.
  • [13] Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Noetherianity and Combination Problems, Proc. Of FroCoS'07, 4720, Springer, 2007.
  • [14] Ghilardi, S., Nicolini, E., Zucchelli, D.: A Comprehensive Combination Framework, ACM Transactions on Computational Logic, 9(2), 2008, 1-54.
  • [15] Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.-K.: On Superposition-Based Satisfiability Procedures and Their Combination, Proc. of ICTAC'05, 3722, Springer, 2005.
  • [16] Lassez, J.-L., Maher, M. J.: On Fourier's Algorithm for Linear Arithmetic Constraints, Journal of Automated Reasoning, 9(3), 1992, 373-379.
  • [17] Lassez, J.-L., McAloon, K.: A Canonical Form for Generalized Linear Constraints, Journal of Symbolic Computation, 13(1), 1992, 1-24.
  • [18] Lynch, C., Tran, D.-K.: SMELS: Satisfiability Modulo Equality with Lazy Superposition, Proc. of ATVA'08, 5311, Springer, 2008.
  • [19] Manna, Z., Zarba, C. G.: Combining Decision Procedures, Formal Methods at the Cross Roads: From Panacea to Foundational Support, 2757, Springer, 2003.
  • [20] Nelson, G., Oppen, D. C.: Simplification by Cooperating Decision Procedures, ACM Transactions on Programming Languages and Systems, 1(2), 1979, 245-257.
  • [21] Nicolini, E.: Combined decision procedures for constraint satisfiability, Ph.D. Thesis, Universit`a degli Studi di Milano, 2007.
  • [22] Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combinable Extensions of Abelian Groups, Proc. Of CADE'09, 5663, Springer, 2009.
  • [23] Nicolini, E., Ringeissen, C., Rusinowitch, M.: Data Structures with Arithmetic Constraints: a Non-Disjoint Combination, Proc. of FroCoS'09, 5749, Springer, 2009, Also as INRIA Report RR-6963.
  • [24] Nicolini, E., Ringeissen, C., Rusinowitch, M.: Satisfiability Procedures for Combination of Theories Sharing Integer Offsets, Proc. of TACAS'09, 5505, Springer, 2009, Also as INRIA Report RR-6697.
  • [25] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T)., Journal of the ACM, 53(6), 2006, 937-977.
  • [26] Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving, in: Handbook of Automated Reasoning (A. Robinson, A. Voronkov, Eds.), vol. I, chapter 7, Elsevier Science, 2001, 371-443.
  • [27] Oppen, D. C.: Reasoning About Recursively Defined Data Structures, Journal of the ACM, 27(3), 1980, 403-411.
  • [28] Shostak, R. E.: Deciding Combinations of Theories, Journal of the ACM, 31, 1984, 1-12.
  • [29] Tinelli, C., Ringeissen, C.: Unions of Non-Disjoint Theories and Combinations of Satisfiability Procedures, Theoretical Computer Science, 290(1), January 2003, 291-353.
  • [30] Tran, D.-K., Ringeissen, C., Ranise, S., Kirchner, H.: Combination of Convex Theories: Modularity, Deduction Completeness, and Explanation, Journal of Symbolic Computation, 45, 2010, 261-286, Special issue on Automated Deduction: Decidability, Complexity, Tractability.
  • [31] Zarba, C. G.: A Tableau Calculus for Combining Non-disjoint Theories, Proc. of TABLEAUX'02, 2381, Springer, 2002.
  • [32] Zucchelli, D.: Combination Methods for Software Verification, Ph.D. Thesis, Universit`a degli Studi di Milano and Université Henri Poincaré - Nancy 1, 2008.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0011-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.