Warianty tytułu
Języki publikacji
Abstrakty
The Calculus of Looping Sequences is a formalism for describing evolution of biological systems by means of term rewriting rules. We propose to enrich this calculus by labelling elements of sequences. Since two elements with the same label are considered to be linked, this allows us to represent protein interaction at the domain level. Well-formedness of terms are ensured by both a syntactic constraint and a type system: we discuss the differences between these approaches through the description of a biological system, namely the EGF pathway.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1-29
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
autor
autor
autor
autor
- Dipartimento di Informatica, Universita di Torino, Corso Svizzera 185, 10149 Torino, Italy, dezani@di.unito.it
Bibliografia
- [1] Biocham. available at http://contraintes.inria.fr/BIOCHAM/.
- [2] R. Alur, C. Belta, and F. Ivancic. Hybrid modeling and simulation of biomolecular networks. In HSCC, volume 2034 of LNCS, pages 19-32. Springer, 2001.
- [3] B. Aman, M. Dezani-Ciancaglini, and A. Troina. Type Disciplines for Analysing Biologically Relevant Properties. In MeCBIC'08, volume 227 of ENTCS, pages 97-111. Elsevier, 2009.
- [4] R. Barbuti, A. Maggiolo-Schettini, and P. Milazzo. Extending the calculus of looping sequences to model protein interaction at. In ISBRA'07, volume 4463 of LNBI, pages 638 - 649. Springer, 2006.
- [5] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, P. Tiberi, and A. Troina. Stochastic calculus of looping sequences for the modelling and simulation of cellular pathways. Transactions on Computational Systems Biology, IX:86 - 113, 2008.
- [6] R. Barbuti, A.Maggiolo-Schettini, P.Milazzo, and A. Troina. A calculus of looping sequences for modeling microbiological systems. Fundamenta Informaticæ, 72(1-3):21-35, 2006.
- [7] R. Barbuti, A.Maggiolo-Schettini, P.Milazzo, and A. Troina. Bisimulations in calculimodellingmembranes. Formal Aspects of Computing, 20(4-5):351-377, 2008.
- [8] L. Bioglio. Enumerated type semantics for the calculus of looping sequences. ITA, 2010. Submitted.
- [9] S. Capecchi and A. Troina. Types for BioAmbients. In FBTC'10, volume 19 of EPTCS, pages 103 - 115, 2010.
- [10] L. Cardelli. Brane calculi. In CMSB'05, volume 3082 of LNCS, pages 257-278. Springer, 2005.
- [11] V. Danos and C. Laneve. Formal molecular biology. Theoretical Computer Science, 325(1):69-110, 2004.
- [12] M. Dezani-Ciancaglini, P. Giannini, and A. Troina. A type system for a stochastic CLS. In MeCBIC'09, volume 11 of EPTCS, pages 91 - 106, 2009.
- [13] M. Dezani-Ciancaglini, P. Giannini, and A. Troina. A type system for required/excluded elements in CLS. In DCM'09, volume 9 of EPTCS, pages 38 - 48, 2009.
- [14] F. Fages and S. Soliman. Abstract interpretation and types for systems biology. Theoretical Computer Science, 403(1):52-70, 2008.
- [15] C. Laneve and F. Tarissan. A simple calculus for proteins and cells. In MeCBIC'06, volume 171 of ENTCS, pages 139-154. Elsevier, 2007.
- [16] H.Matsuno, A. Doi,M. Nagasaki, and S.Miyano. Hybrid Petri net representation of gene regulatory network. In Pacific Symposium on Biocomputing, pages 341-352.World Scientific Press, 2000.
- [17] G. Pǎun. Membrane computing. An introduction. Springer, 2002.
- [18] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. Bioambients: An abstraction for biological compartments. Theoretical Computer Science, 325:141-167, 2004.
- [19] A. Regev and E. Shapiro. Cells as computation. Nature, 419(6905):343, 2002.
- [20] A. Regev and E. Shapiro. The π-calculus as an abstraction for biomolecular systems. Modelling in Molecular Biology, pages 219-266, 2004.
- [21] S. Straight, P. Hinkle, R. Jewers, and D. McCance. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermial growth factor receptor in keratinocytes. Journal of Virology, 67:4521-4532, 1993.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0011-0001