Czasopismo
2010
|
Vol. 101, nr 4
|
257-270
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A (combinatorial) channel consists of pairs of words representing all possible inputoutput channel situations. In a past paper, we formalized the intuitive concept of "largest amount of errors" detectable by a given language L, by defining the maximal error-detecting capabilities of L with respect to a given class of channels, and we showed how to compute all maximal error-detecting capabilities (channels) of a given regular language with respect to the class of rational channels and a class of channels involving only the substitution-error type. In this paper we resolve the problem for channels involving any combination of the basic error types: substitution, insertion, deletion. Moreover, we consider the problem of finding the inverses of these channels, in view of the fact that L is error-detecting for γif and only if it is error-detecting for the inverse of γ. We also discuss a natural method of reducing the problem of computing (inner) distances of a given regular language L to the problem of computing maximal error-detecting capabilities of L
Czasopismo
Rocznik
Tom
Strony
257-270
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
autor
- Department of Mathematics and Computing Science, Saint Mary’s University, Halifax, Nova Scotia, B3H 3C3 Canada, s.konstantinidis@smu.ca
Bibliografia
- [1] Calude, C., Salomaa, K., Yu, S.: Additive distances and quasi-distances between words, Journal of Universal Computer Science 8, 2002, 141-152.
- [2] Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of relations, Theoretical Computer Science 286(1), 2002, 117-138.
- [3] Daka, A.: Maximal Error-detecting Capabilities of Regular Languages (tentative title). MSc APS thesis, Dept. Math. and Computing Sci., Saint Mary's University, Canada (in progress).
- [4] Duske, J., Jürgensen, H.: Codierungstheorie. BI Wissenschaftsverlag,Manheim, 1977.
- [5] Johnson, H: Rational equivalence relations, Theoretical Computer Science 47(1), 1986, 39-60.
- [6] Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems, Journal of Automata, Languages and Combinatorics 9(2-3), 2004, 293-309.
- [7] Konstantinidis, S.: Transducers and the properties of error-detection, error-correction and finite-delay decodability, Journal of Universal Computer Science 8, 2002, 278-291.
- [8] Konstantinidis, S: Computing the edit distance of a regular language, Information and Computation 205, 2007, 1307-1316. A shorter version appears as "Computing the Levenshtein distance of a regular language," Proc. IEEE Information TheoryWorkshop on Coding and Complexity, Rotorua, New Zealand, Aug. 29 - Sep. 1, 2005, pp 113-116.
- [9] Konstantinidis, S., Silva, P.V:Maximal error-detecting capabilities of formal languages, Journal of Automata, Languages and Combinatorics 13, 2008, 55-71.
- [10] McAloney, C.L.: Error-correction and finite transductions. MSc thesis, Dept. Computing and Information Sci., Queen's University, Canada, 2003.
- [11] Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Dokl. 10, 1966, 707-710.
- [12] Peterson,W.W., Weldon, Jr., E.J.: Error-Correcting Codes. MIT Press, Cambridge, second ed., 1972.
- [13] Rozenberg, G., Salomaa, A. (eds): Handbook of Formal Languages, Vol. I. Springer-Verlag, Berlin, 1997.
- [14] Salomaa, K., Schofield, P: State complexity of additive weighted finite automata. International Journal of the Foundations of Computer Sci. 18, 2007, 1407-1416.
- [15] Sankoff, D., Kruskal, J.: TimeWarps, String Edits, andMacromolecules: The theory and practice of sequence comparison. CSLI Publications, 1999.
- [16] Yu, S.: Regular Languages. In [13], 41-110.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0010-0071