Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2011 | No. 53 (1) | 137-161
Tytuł artykułu

Development and growth of Temora longicornis: numerical simulations using laboratory culture data

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quantitative expressions are presented to describe the effects of temperature and food concentration on stage duration and growth rate of Temora longicornis for each of the model stage groups (N1-N6 - naupliar stages, C1, C2, C3, C4, C5 - the five copepodid stages). The calculations were made on the basis of experimental data from the literature for Temora longicornis from the south-eastern and the southern North Sea. Relationships were obtained between the growth parameters and temperature for the 5-10°C temperature range and food concentrations from 25 mgC m-3 to excess. Also computed was the total mean development time as a function of the above-mentioned parameters, temperature and food availability. The simulations computed here are similar to the experimental results. The growth rates for successive stages were obtained according to the correction of the "Moult Rate" method, which allows the use of mean weights and stage durations. The calculations also suggest that three complete generations of T. longicornis from the Gdańsk Deep (the southern Baltic Sea) can develop during a single year.
Wydawca

Czasopismo
Rocznik
Strony
137-161
Opis fizyczny
Bibliogr. 41 poz., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland, dzierzb@iopan.gda.pl
Bibliografia
  • 1.Atkinson A., 1995, Omnivory and feeding selectivity in five copepod species during spring in the Bellingshausen Sea, Antarctica, ICES J. Mar. Sci., 52 (3-4), 385-396.
  • 2.Campbell R.G., Wagner M.M., Teegarden G. J., Boudreau C.A., Durbin E.G., 2001, Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory, Mar. Ecol.-Prog. Ser., 221, 161-183.
  • 3.Dzierzbicka-Głowacka L., 2004, Growth and development of copepodite stages of Pseudocalanus spp., J. Plankton Res., 26 (1), 49-60.
  • 4.Dzierzbicka-Głowacka L., 2005a, A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdańsk Gulf, J. Marine Syst., 53 (1-4), 19-36.
  • 5.Dzierzbicka-Głowacka L., 2005b, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591-619.
  • 6.Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., 2006, Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) - numerical simulations, Biogeosciences, 3 (4), 635-650.
  • 7.Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., Jakacki J., Pempkowiak J., 2010b, Particulate organic carbon in the southern Baltic Sea: numerical simulations and experimental data, Oceanologia, 52 (4), 621-648.
  • 8.Dzierzbicka-Głowacka L., Lemieszek A., Żmijewska M. I., 2009a, Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 1. Development time, Oceanologia, 51 (2), 165-184.
  • 9.Dzierzbicka-Głowacka L., Lemieszek A., Żmijewska M. I., 2009b, Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 2. Egg production, Oceanologia, 51 (2), 185-201.
  • 10.Dzierzbicka-Głowacka L., Żmijewska I.M., Mudrak S., Jakacki J., Lemieszek A., 2010a, Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea, Biogeosciences, 7 (7), 2247-2259.
  • 11.Fennel W., 2001, Modeling of copepods with links to circulation model, J. Plankton Res., 23 (11), 1217-1232.
  • 12.Fernandez F., 1979, Nutrition studies in the nauplius larva of Calanus pacificus (Copepoda: Calanoida), Mar. Biol., 53 (2), 131-147.
  • 13.Fransz H.G., Gonzalez S.R., Klein Breteler W.C.M., 1989, Fecundity as a factor controlling the seasonal population cycle in Temora longicornis (Copepoda, Calanoida), [in:] Reproduction, genetics and distributions of marine organisms, J. S. Ryland & P.A. Tyler (eds.), 23rd European Marine Biology Symposium, School of Biological Sciences, Univ. Wales, Swansea, 5-9 September 1988, 23, 83-90.
  • 14.Gruzov L.H., 1985, Methods of modeling the age dependent ration changes of plankton crustaceans feeding on variable quality of food, Int. Rev. Ges. Hydrobio., 70 (5), 633-655.
  • 15.Halsband-Lenk C., Hirche H., Carlotti J. F., 2002, Temperature impact on reproduction and development of congener copepod populations, J. Exp. Mar. Biol. Ecol., 271 (2), 121-153.
  • 16.Harris R.P., Paffenhöfer G.A., 1976a, Feeding, growth and reproduction of the marine planktonic copepod Temora longicornis Müller, J. Mar. Biol. Assoc. UK, 56 (3), 675-690.
  • 17.Harris R.P., Paffenhöfer G.A., 1976b, The effect of food concentration on cumulative ingestion and growth efficiency of two small marine planktonic copepods, J. Mar. Biol. Assoc. UK, 56 (4), 875-888.
  • 18.Hay S. J., Evans G.T., Gamble J.C., 1988, Birth, growth and death rates for enclosed populations of calanoid copepods, J. Plankton Res., 10 (3), 431-454.
  • 19.Hirst A.G., Bunker A. J., 2003, Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight, Limnol. Oceanogr., 48 (5), 1988-2010.
  • 20.Hirst A.G., Kiorbe T., 2002, Mortality of marine planktonic copepods: global rates and patterns, Mar. Ecol.-Prog. Ser., 230, 195-209.
  • 21.Hirst A.G., Peterson W.T., Rothery P., 2005, Errors in juvenile copepod growth rate estimates are widespread: problems with the Moult Rate method, Mar. Ecol.-Prog. Ser., 296, 263-279.
  • 22.Houde S.E.L., Roman M.R., 1987, Effects of food quality on the functional ingestion response of the copepod Acartia tonsa, Mar. Ecol.-Prog. Ser., 40, 69-77.
  • 23.Huntley M., Sykes P., Rohan S., Marin V., 1986, Chemically mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: Mechanisms, occurrence, significance, Mar. Ecol.-Prog. Ser., 28, 105-120.
  • 24.Klein Breteler W.C.M., 1980, Continuous breeding of marine pelagic copepods in the presence of heterotrophic dinoflagellates, Mar. Ecol.-Prog. Ser., 2, 229-233.
  • 25.Klein Breteler W.C.M., Fransz H.G., Gonzalez S.R., 1982, Growth and development of four calanoid copepod species under experimental and natural conditions, Neth. J. Sea Res., 16, 195-207.
  • 26.Klein Breteler W.C.M., Gonzalez S.R., 1986, Culture and development of Temora longicornis (Copepoda, Calanoida) cultured at different temperature and food conditions, Mar. Ecol.-Prog. Ser., 119, 99-110.
  • 27.Klein Breteler W.C.M., Schogt N., Gonzalez S.R., 1990, On the role of food quality and development of life stages, and genetic change of body size during cultivation of pelagic copepods, J. Exp. Mar. Biol. Ecol., 135 (3), 177-189.
  • 28.Leandro S.M., Queiroga H., Rodriguez-Gra˜na L., Tiselius P., 2006a, Temperature-dependent development and somatic growth in two allopatric populations of Acartia clausi (Copepoda: Calanoida), Mar. Ecol.-Prog. Ser., 322, 189-197.
  • 29.Leandro S.M., Tiselius P., Queiroga H., 2006b, Growth and development of nauplii and copepodites of the estuarine copepod Acartia tonsa from southern Europe (Ria de Aveiro, Portugal) under saturating food conditions, Mar. Biol., 150, 121-129.
  • 30.Martens P., 1980, Beiträge zum Mesozooplankton des Nordsylter Wattenmeeres, Helgol. Wiss. Meeresunters., 34, 41-53.
  • 31.McLaren I.A., 1963, Effects of temperature on growth of zooplankton and the adaptive value of vertical migration, J. Fish. Res. Board Can., 20, 685-727.
  • 32.McLaren I.A., 1965, Some relationships between temperature and egg size, body size, development rate, and fecundity of the copepod Pseudocalanus, Limnol. Oceanogr., 10 (4), 528-538.
  • 33.McLaren I.A., 1978, Generation lengths of some temperate marine copepods: estimation, prediction and implication, J. Fish. Res. Board Can., 35, 1330-1342.
  • 34.McLaren I.A., Corkett C. J., Zillioux E. J., 1969, Temperature adaptations of copepod eggs from the Arctic to the tropics, Biol. Bull., 137 (3), 486-493.
  • 35.Moll A., Stegert Ch., 2007, Modelling Pseudocalanus elongatus stage-structured population dynamics embedded in a water column ecosystem model for the northern North Sea, J. Marine Syst., 64 (1-4), 35-46.
  • 36.Person-Le Ruyet J., 1975, Elevage de copエepodes calanoides. Biologie et dynamique des populations: premiers rエesultats, Ann. Inst. Ocエeanogr. Paris, 51, 203-221.
  • 37.Peterson W.T., 2001, Patterns in stage duration and development among marine and freshwater calanoid and cyclopoid copepods: a review of rules, physiological constraints, and evolutionary significance, Hydrobiologia, 453-454 (1), 91-105.
  • 38.Stegert Ch., Kreus M., Carlotii F., Moll A., 2007, Parameterisation of a zooplankton population model for Pseudocalanus elongatus using stage durations from laboratory experiments, Ecol. Model., 206 (3-4), 213-230.
  • 39.Twombly S., Burns C.W., 1996, Effects of food quality on individual growth and development in the freshwater copepod Boeckella triarticulata, J. Plankton Res., 18 (11), 2179-2196.
  • 40.Wiktor K., 1990, Biomasa zooplanktonu w przybrzeżnych wodach Zatoki Gdańskiej, Oceanografia, 12, 109-134.
  • 41.Załachowski W., Szypuła J., Krzykawski S., Krzykawska I., 1975, Feeding of some commercial fishes in the southern region of the Baltic Sea in 1971 and 1972, Pol. Arch. Hydrobiol., 22, 429-448.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0008-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.