Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2009 | No. 51 (4) | 525-539
Tytuł artykułu

Purification and characterisation of ferritin from the Baltic blue mussel Mytilus trossulus

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Baltic blue mussels Mytilus trossulus were collected from the Gulf of Gdańsk (southern Baltic Sea) in order to isolate ferritin from its soft tissues, as well as to purify and characterise this protein. Proteins were isolated from the inner organs of M. trossulus (hepatopancreas, gills and soft tissue residue) by thermal denaturation (70°C) and acidification (pH 4.5) of the homogenates, followed by ammonium sulphate ((NH4)2SO4) fractionation. The ferritin was then separated by ultracentrifugation (100 000 × g, 120 min.). The protein content in the purified homogenates was determined by the Lowry method using bovine serum albumin (BSA) and horse spleen ferritin (HSF) as standards. PAGE-SDS and Western blotting analysis permitted identification of ferritin in the purified preparations. Additionally, the purified homogenates and mussel soft tissue were analysed for their heavy metal contents (especially cadmium and iron) in a Video 11 E atomic absorption spectrophotometer, following wet digestion of the samples (HNO3/HClO4). The electrophoregrams showed that the inner organs of M. trossulus contained ferritin, which, like plant ferritin, is characterised by the presence of subunits in the electrophoregram in the 26.6-28.0 kDa range. The highest ferritin content was recorded in the hepatopancreas, followed by the gills and the soft tissue residue. With regard to the sampling stations, the highest content of ferritin was noted in the animals sampled off Sopot (station D3), and in those collected by a diver off Jastarnia (W1) and Gdynia (W4). Ferritin isolated from the inner organs of mussels collected from these stations also contained the largest quantities of heavy metals (Cd and Fe). Ferritin isolated from the inner organs of mussels collected by a diver from wrecks - sites where the concentrations of iron and other trace metals in the sea water are high - contained higher quantities of heavy metals (Cd and Fe) than the ferritin isolated from the inner organs of mussels collected with the drag. This confirms that ferritin is a protein able to store and transport not only iron, but also, though to a lesser extent, some other heavy metals, including cadmium.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
525-539
Opis fizyczny
bibliogr. 41 poz., tab., wykr.
Twórcy
autor
  • Marine Chemistry and Biochemistry Department, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland, potrykus@iopan.gda.pl
Bibliografia
  • 1.Aisen P., Listkowsky L., 1980, Iron transport and storage protein, Annu. Rev. Biochem., 49, 357-393.
  • 2.Bauchspieß K.R., St. Pierre T.G., Webb J., 1995, The effect of temperature on the radial distribution function of iron in native horse spleen ferritin, Physica B, 208/209, 545-546.
  • 3.Briat J.F., Lobréaux S., 1997, Iron transport and storage in plants, Trends Plant Sci., 2 (5), 187-193.
  • 4.Chasteen N.D., 1998, Ferritin. Uptake, storage, and release of iron, [in:] Metal ions in biological systems, A. Siegel & H. Siegel (eds.), Vol. 35, Marcel Dekker, Inc., New York, 479-514.
  • 5.Chasteen N.D., Harrison P.M., 1999, Mineralization in ferritin: an efficient means of iron storage, J. Struct. Biol., 126 (3), 182-194.
  • 6.Choi J. K., Jo P.G., Choi C.Y., 2008, Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster,Cr assostrea gigas, Comp. Biochem. Phys. C, 147 (3), 286-292.
  • 7.Fobis-Loisy I., Aussel L., Briat J.-F., 1996, Post-transcriptional regulation of plant ferritin accumulation in response to iron as observed in the maize mutant ys1, FEBS Lett., 397 (2-3), 149-154.
  • 8.Frolow F., Kalb A. J., Yariv J., 1994, Structure of a unique twofold symmetric haem-binding site, Nat. Struct. Biol., 1, 453-460.
  • 9.Geetha C., Deshpande V., 1999, Purification and characterization of fish liver ferritins, Comp. Biochem. Phys. B, 123 (3), 285-294.
  • 10.Geret F., Cosson R.P., 2002, Induction of specific isoforms of metallothionein in mussel tissues after exposure to cadmium or mercury, Arch. Environ. Con. Tox., 42 (1), 36-42.
  • 11.Huang H.-Q., Xiao Z.-Q., Chen X., Lin Q.-M., Cai Z.-W., Chen P., 2004, Characteristics of structure,c omposition, mass spectra, and iron release from the ferritin of shark liver (Sphyrna zygaena), Biophys. Chem., 111 (3), 213 -222.
  • 12.Kakuta K., Orino K., Yamamoto S., Watanabe K., 1997, High levels of ferritin and iron in fetal bovine serum - comparison by five methods, Comp. Biochem. Phys. A, 118 (1), 165-169.
  • 13.Kong B., Huang H.-Q., Lin Q.-M., Kim W.-S., Cai Z., Cao T.-M., Miao H., Luo D.-M., 2003, Purification,ele ctrophoretic behavior, and kinetics of iron release of liver ferritin of Dasyatis akajei, J. Protein Chem., 22 (1), 61-70.
  • 14.Korcz A., Twardowski T., 1989, Mechanizmy regulacji biosyntezy białka na przykładzie ferrytyny, Post. Biol. Koórki, 16 (2), 177-196.
  • 15.Korcz A., Twardowski T., 1992a, Lupin ferritin: purification and characterization, biosynthesis and regulation of in vitro synthesis in plants, J. Plant Physiol., 141 (1), 75-81.
  • 16.Korcz A., Twardowski T., 1992b, The effect of selected heavy metal ions on the in vitro translation system of wheat germ - protective function of plant ferritin, Acta Physiol. Plant., 14 (4), 185-190.
  • 17.Kumar T.R., Prasad M.N.V., 1999, Metal binding properties of ferritin in Vigna mungo (L.) Hepper (Black Gram): Possible role in heavy metal detoxification, Bull. Environ. Contam. Tox., 62 (4), 502-507.
  • 18.Lewin A., Moore G.R., Le Brun N. E., 2005, Formation of protein-coated iron minerals, Dalton Trans., 22, 3597-3610.
  • 19.Liu X., Theil E.C., 2005, Ferritins: dynamic management of biological iron and oxygen chemistry, Accounts Chem. Res., 38 (3), 167-175.
  • 20.Lowry O.H., Rosebrough N. J., Farr A. L., Randall R. J., 1951, Protein measurement with Folin phenol reagent, J. Biol. Chem., 193 (1), 265-275.
  • 21.Nair P. S., Robinson W.E., 2000, Cadmium speciation and transport in the blood of the bivalve Mytilus edulis, Mar. Environ. Res., 50 (1-5), 99-102.
  • 22.Penfold C.N., Ringeling P. L., Davy S. L., Moore G. R., McEwan A.G., Spiro S., 1996, Isolation,char acterisation and expression of the bacterioferritin gene of Rhodobacter capsulatus, FEMS Microbiol. Lett., 139 (2-3), 143-148.
  • 23.Price D. J., Joshi J.G., 1982, Ferritin: a zinc detoxicant and a zinc ion donor, Proc. Natl. Acad. Sci. (USA), 79, 3116-3119.
  • 24.Price D. J., Joshi J.G., 1983, Ferritin: binding of beryllium and other divalent metal ions, J. Biol. Chem., 258 (18), 10873-10880.
  • 25.Ragland M., Theil E.C., 1993, Ferritin (mRNA,pr otein) and iron concentrations during soybean nodule development, Plant Mol. Biol., 21 (3), 555-560.
  • 26.Rahman I.H.A., Chua-anusorn W., Webb J., Macey D. J., St. Pierre T.G., 1999, Characterization of dugong liver ferritin, Anal. Chim. Acta, 393 (1-3), 235-243.
  • 27.Sczekan S. R., Joshi J.G., 1989, Metal-binding properties of phytoferritin and synthetic ion cores, Biochim. Biophys. Acta, 990 (1), 8-14.
  • 28.Suryakala S., Deshpande V., 1999, Purification and characterization of liver ferritins from different animal species, Vet. Res. Commun., 23 (3), 165-181.
  • 29.Theil E.C., 1987, Ferritin: structure,gen e regulation, and cellular function in animals,plan ts, and microorganisms, Annu. Rev. Biochem., 56, 289-319.
  • 30.Theil E.C., 1998, The iron responsive element (IRE) family of mRNA regulators. Regulation of iron transport and uptake compared in animals, plants, and microorganisms, Met. Ions Biol. Syst., 35, A. Siegel & H. Siegel (eds.), Marcel Dekker, Inc., New York, 403-434.
  • 31.Theil E.C., 2007, Coordinating responses to iron and oxygen stress with DNA and mRNA promoters: the ferritin story, Biometals, 20 (3-4), 513-521.
  • 32.Theil E.C., Sayers D., 1989, Iron core formation in ferritin, Basic Life Sci., 51, 161-167.
  • 33.Theil E.C., Takagi H., Small G.W., He L., Tipton A.R., Danger D., 2000, The ferritin iron entry and exit problem, Inorg. Chim. Acta, 297 (1), 242-251.
  • 34.Tosha T., HasanM.R., Theil E.C., 2008, The ferritin Fe2 site at the diiron catalytic center controls the reaction with O2 in the rapid mineralization pathway, PNAS, 105 (47), 18182-18187.
  • 35.Treffry A., Zhao Z., Quail M.A., Guest J.R., Harrison P.M., 1998, How the presence of three iron binding sites affects the iron storage function of the ferritin (EcFtnA) of Escherichia coli, FEBS Lett., 432 (3), 213-218.
  • 36.Uchida T., 1995, Overview of iron metabolism, Int. J. Hematol., 62 (4), 193-202.
  • 37.Ueno T., Abe M., Hirata K., Abe S., Suzuki M., Shimizu N., Yamamoto M., Takata M., Watanabe Y., 2009, Process of accumulation of metal ions on the interior surface of apo-ferritin: crystal structures of a series of apo-ferritins containing variable quantities of Pd(II) ions, J. Am. Chem. Soc., 131 (14), 5094-5100.
  • 38.Wardeska J.G., Viglione B., Chasteen N.D., 1986, Metal ion complexes of apoferritin. Evidence for initial binding in the hydrophilic channels, J. Biol. Chem., 261 (15), 667-6683.
  • 39.Winzerling J. J., Nez P., Porath J., Law J.H., 1995, Rapid and efficient isolation of transferrin and ferritin from Manduca sexta, Insect Biochem. Molec. Biol., 25 (2), 217-224.
  • 40.Worwood M., 1997, The laboratory assessment of iron status - an update, Clin. Chim. Acta, 259, 3-23.
  • 41.Zhang Y., Meng Q., Jiang T., Wang H., Xie L., Zhang R., 2003, A novel ferritin subunit involved in shell formation from the pearl oyster (Pinctada fucata), Comp. Biochem. Phys. B, 135 (1), 43-54.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0020-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.