Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 47, [Z] 2 | 179-191
Tytuł artykułu

On theorems for weak solutions of nonlinear differential equations with and without delay in Banach spaces

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work we give an existence theorem for bounded weak solution of the differential equation.......[formuła matematyczna]
Wydawca

Rocznik
Strony
179-191
Opis fizyczny
bibliogr. 26 poz.
Twórcy
autor
Bibliografia
  • [1] A. Alexiewicz, Analiza funkcjonalna, Warszawa 1969.
  • [2] A. Ambrosetti, Una teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend Sem Mat Univ Padova, 39 (1967), 349-360.
  • [3] J. Bana`s and K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics v. 60, Marcel Dekker Inc. New Yourk 1980.
  • [4] M. Boundourides, An existence theorem for ordinary differential equations in Banach spaces, Bull. Austral. Math. Soc. 22 (1980), 457-463.
  • [5] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics v 580. Springer Verlag 1977.
  • [6] M. Cicho´n, A point of view on measures of noncompactness, Demonstratio Math., 26 (1993), 767-777.
  • [7] M. Cichoń, Differential inclusions and abstract control problems, Bull. Austral Math. Soc., 53 (1996), 109-122.
  • [8] M. Cichoń, On bounded weak solutions of a nonlinear differential equation in Banach space, Functiones et Approximatio, 11 (1992), 27-35.
  • [9] M. Cichoń, On measures of weak noncompactness, Publicationes Mathematicae Debrecen, 45 1-2 (1994), 93-102.
  • [10] M. Cichoń, Trichotomy and bounded solutions of nonlinear differential equations, 119(3) (1994), 275-284.
  • [11] E. Cramer, V. Lakshmikantham and A.R. Mitchell, On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonlinear Anal. 2 (1976), 169-177.
  • [12] F.S. De Blasi and J. Myjak, On continuous approximations for multifunctions, Pacific J. Math. 123 (1986), 9-13.
  • [13] I.T. Gohberg, L.S. Goldenstein and A.S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Učen. Zap. Kishinevskogo Univ. 29 (1957), 29-36 [Russian].
  • [14] A.M. Gomaa, Existence solutions for differential equations with delay in Banach spaces, to appear in Math. & Phy. Soc.of Egypt.
  • [15] A.M. Gomaa, Weak and strong solutions for differential equations in Banach spaces, Chaos, Solitons & Fractals, 18 (4) (2003), 687-692.
  • [16] E. Hille and R.S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Providence R.I. 1957.
  • [17] A.G. Ibrahim and A.M. Gomaa, Strong and weak solutions for differential inclusions with moving constraints in Banach spaces, PU. M. A. 8(1) (1997), 53-65.
  • [18] V.I. Istratescu, On a measures of noncompactness, Bull. Math. Soc. Sci. Math., R. S. Roumanie 16 (1972), 195-197.
  • [19] E. Klein and A. Thompson, Theory of correspondences, Wiley, New York 1984.
  • [20] S. Krzyśka and I. Kubiaczyk On bounded pseudo and weak solutions of a nonlinear differential equation in Banach spaces, Demonstratio Mathematica, 17 (2) (1999), 323-330.
  • [21] K. Kuratowski, Sur les espaces complétes, Fund. Math. 15 (1930), 301-309.
  • [22] M. Makowiak, On some bounded solutions of a nonlinear differential equations, DemonstratioMathematica, 15 (4) (1994), 801-808.
  • [23] J.L. Massera and J.J. Shaffer,Linear Differential Equations and Function Spaces, New York-London 1966.
  • [24] A.R. Michell and C. Smith,An existence theorem for weak solution of differential equationsin Banach spaces, Nonlinear Equation in Abstract Spaces (V. Lakshmikantham, ed), (1978) 387-404.
  • [25] N.S. Papageorgiou, Weak solutions of differential equations in Banach spaces, Bull. Austral. Math. Soc., 33 (1986), 407-418.
  • [26] A. Szep, Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Sci. Math. Hungar,6 (1971), 197-203.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0019-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.