Czasopismo
2007
|
Vol. 47, [Z] 2
|
179-191
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In the present work we give an existence theorem for bounded weak solution of the differential equation.......[formuła matematyczna]
Rocznik
Tom
Strony
179-191
Opis fizyczny
bibliogr. 26 poz.
Twórcy
autor
- Helwan University Department of Mathematics, Faculty of Science, Egypt, gomaa5@hotmail.com
Bibliografia
- [1] A. Alexiewicz, Analiza funkcjonalna, Warszawa 1969.
- [2] A. Ambrosetti, Una teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend Sem Mat Univ Padova, 39 (1967), 349-360.
- [3] J. Bana`s and K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics v. 60, Marcel Dekker Inc. New Yourk 1980.
- [4] M. Boundourides, An existence theorem for ordinary differential equations in Banach spaces, Bull. Austral. Math. Soc. 22 (1980), 457-463.
- [5] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics v 580. Springer Verlag 1977.
- [6] M. Cicho´n, A point of view on measures of noncompactness, Demonstratio Math., 26 (1993), 767-777.
- [7] M. Cichoń, Differential inclusions and abstract control problems, Bull. Austral Math. Soc., 53 (1996), 109-122.
- [8] M. Cichoń, On bounded weak solutions of a nonlinear differential equation in Banach space, Functiones et Approximatio, 11 (1992), 27-35.
- [9] M. Cichoń, On measures of weak noncompactness, Publicationes Mathematicae Debrecen, 45 1-2 (1994), 93-102.
- [10] M. Cichoń, Trichotomy and bounded solutions of nonlinear differential equations, 119(3) (1994), 275-284.
- [11] E. Cramer, V. Lakshmikantham and A.R. Mitchell, On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonlinear Anal. 2 (1976), 169-177.
- [12] F.S. De Blasi and J. Myjak, On continuous approximations for multifunctions, Pacific J. Math. 123 (1986), 9-13.
- [13] I.T. Gohberg, L.S. Goldenstein and A.S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Učen. Zap. Kishinevskogo Univ. 29 (1957), 29-36 [Russian].
- [14] A.M. Gomaa, Existence solutions for differential equations with delay in Banach spaces, to appear in Math. & Phy. Soc.of Egypt.
- [15] A.M. Gomaa, Weak and strong solutions for differential equations in Banach spaces, Chaos, Solitons & Fractals, 18 (4) (2003), 687-692.
- [16] E. Hille and R.S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Providence R.I. 1957.
- [17] A.G. Ibrahim and A.M. Gomaa, Strong and weak solutions for differential inclusions with moving constraints in Banach spaces, PU. M. A. 8(1) (1997), 53-65.
- [18] V.I. Istratescu, On a measures of noncompactness, Bull. Math. Soc. Sci. Math., R. S. Roumanie 16 (1972), 195-197.
- [19] E. Klein and A. Thompson, Theory of correspondences, Wiley, New York 1984.
- [20] S. Krzyśka and I. Kubiaczyk On bounded pseudo and weak solutions of a nonlinear differential equation in Banach spaces, Demonstratio Mathematica, 17 (2) (1999), 323-330.
- [21] K. Kuratowski, Sur les espaces complétes, Fund. Math. 15 (1930), 301-309.
- [22] M. Makowiak, On some bounded solutions of a nonlinear differential equations, DemonstratioMathematica, 15 (4) (1994), 801-808.
- [23] J.L. Massera and J.J. Shaffer,Linear Differential Equations and Function Spaces, New York-London 1966.
- [24] A.R. Michell and C. Smith,An existence theorem for weak solution of differential equationsin Banach spaces, Nonlinear Equation in Abstract Spaces (V. Lakshmikantham, ed), (1978) 387-404.
- [25] N.S. Papageorgiou, Weak solutions of differential equations in Banach spaces, Bull. Austral. Math. Soc., 33 (1986), 407-418.
- [26] A. Szep, Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Sci. Math. Hungar,6 (1971), 197-203.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0019-0010