Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 86, nr 4 | 411-428
Tytuł artykułu

Unsupervised Pixel Classification in Satellite Imagery: A Two-stage Fuzzy Clustering Approach

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A popular approach for landcover classification in remotely sensed satellite images is clustering the pixels in the spectral domain into several fuzzy partitions. It has been observed that performance of the clustering algorithms deteriorate with more and more overlaps in the data sets. Motivated by this observation, in this article a two-stage fuzzy clustering algorithm is described that utilizes the concept of points having significant membership to multiple classes. The points situated in the overlapped regions of different clusters are first identified and excluded from consideration while clustering. Thereafter, these points are given class labels based on Support vector Machine classifier which is trained by the remaining points. The well known Fuzzy C-Means algorithm and some recently proposed genetic clustering schemes are utilized in the process. The effectiveness of the two-stage clustering technique has been demonstrated on IRS remote sensing satellite images of the cities of Bombay and Calcutta and compared with other well known clustering techniques. Also statistical significance test has been carried out to establish the statistical significance of the clustering results.
Wydawca

Rocznik
Strony
411-428
Opis fizyczny
bibliogr. 30 poz., fot., tab.
Twórcy
autor
  • Department of Computer Science and Engineering, University of Kalyani, Kalyani - 741235, India, anirbanbuba@yahoo.com
Bibliografia
  • [1] Bandyopadhyay, S., Maulik, U.: Genetic Clustering for Automatic Evolution of Clusters and Application to Image Classification, Pattern Recognition, 35(2), 2002, 1197-1208.
  • [2] Bandyopadhyay, S., Maulik, U., Mukhopadhyay, A.: Multiobjective Genetic Clustering for Pixel Classification in Remote Sensing Imagery, IEEE Transactions on Geoscience and Remote Sensing, 45(5), 2007, 1506-1511.
  • [3] Bandyopadhyay, S., Mukhopadhyay, A., Maulik, U.: An Improved Algorithm for Clustering Gene Expression Data, Bioinformatics, 23(21), 2007, 2859-2865.
  • [4] Bandyopadhyay, S., Pal, S. K.: Pixel Classification Using Variable String Genetic Algorithms with Chromosome Differentiation, IEEE Transactions on Geoscience and Remote Sensing, 39(2), 2001, 303- 308.
  • [5] Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A Simulated Annealing based Multi-objective Optimization Algorithm: AMOSA, IEEE Transactions on Evolutionary Computation, 12(3), 2008, 269-283.
  • [6] Baraldi, A., Parmiggiani, F.: A Neural Network for Unsupervised Categorization of Multivalued Input Pattern: An Application to Satellite Image Clustering, IEEE Transactions on Geoscience and Remote Sensing, 33, 1995, 305-316.
  • [7] Bensaid, A. M., Hall, L. O., Bezdek, J. C., Clarke, L. P., Silbiger, M. L., Arrington, J. A., Murtagh, R. F.: Validity-Guided (Re)Clustering with Applications to Image Segmentation, IEEE Transactions on Fuzzy Systems, 4(2), 1996, 112-123.
  • [8] Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York, 1981.
  • [9] Bezdek, J. C., Pal, N. R.: Some New Indexes of Cluster Validity, IEEE Transactions on Systems, Man and Cybernetics, 28, 1998, 301-315.
  • [10] Cannon, R. L., Dave, R., Bezdek, J. C., Trivedi,M.: Segmentation of a ThematicMapper Image using Fuzzy c-means Clustering Algorithm, IEEE Transactions on Geoscience and Remote Sensing, 24, 1986, 400- 408.
  • [11] Coello Coello, C. A.: A comprehensive survey of evolutionary-basedmultiobjective optimization techniques, Knowledge and Information Systems, 1(3), 1999, 129-156.
  • [12] Davis, L., Ed.: Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.
  • [13] Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, John Wiley and Sons, Ltd, England, 2001.
  • [14] Deb, K., Pratap, A., Agrawal, S.,Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6, 2002, 182-197.
  • [15] Everitt, B. S.: Cluster Analysis, Third edition, Halsted Press, 1993.
  • [16] Ferguson, G. A., Takane, Y.: Statistical Analysis in Psychology and Education, Sixth edition, McGraw-Hill Ryerson Limited, 2005.
  • [17] Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, New York, 1989.
  • [18] Groll, L., Jakel, J.: A New Convergence Proof of Fuzzy c-Means, IEEE Transactions on Fuzzy Systems, 13(5), 2005, 717-720.
  • [19] data users handbook, I.: NRSA, Hyderabad, India, Rep. IRS/NRSA/NDC/HB-01/86, 1986.
  • [20] Hoppner, F., Klawonn, F.: A contribution to convergence theory of fuzzy c-means and derivatives, IEEE Transactions on Fuzzy Systems, 11(5), 2003, 682-694.
  • [21] Jain, A. K., Dubes, R. C.: Algorithms for Clustering Data, Prentice-Hall, Englewood Cliffs, NJ, 1988.
  • [22] Laprade, R. H.: Split-and-merge Segmentation of Aerial Photographs, Computer Vision Graphics and Image Processing, 48, 1988, 77-86.
  • [23] Maulik, U., Bandyopadhyay, S.: Genetic Algorithm Based Clustering Technique, Pattern Recognition, 33, 2000, 1455-1465.
  • [24] Maulik, U., Bandyopadhyay, S.: Performance Evaluation of Some Clustering Algorithms and Validity Indices, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(12), 2002, 1650-1654.
  • [25] Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification, IEEE Transactions on Geoscience and Remote Sensing, 41(5), 2003, 1075- 1081.
  • [26] Pal, N. R., Bezdek, J. C.: On Cluster Validity for the Fuzzy c-Means Model, IEEE Transactions on Fuzzy Systems, 3, 1995, 370-379.
  • [27] Tou, J. T., Gonzalez, R. C.: Pattern Recognition Principles, Addison-Wesley, Reading, 1974.
  • [28] Vapnik, V.: Statistical Learning Theory, Wiley, New York, USA, 1998.
  • [29] Wong, Y. F., Posner, E. C.: A New Clustering Algorithm Applicable to Polarimetric and SAR Images, IEEE Transactions on Geoscience and Remote Sensing, 31(3), 1993, 634-644.
  • [30] Xie, X. L., Beni, G.: A Validity Measure for Fuzzy Clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 1991, 841-847.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0018-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.