Czasopismo
2008
|
Vol. 84, nr 3-4
|
443-470
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
One of the aims of a logic for pragmatics is to provide a logical framework that formalizes reasoning about speech acts. In this paper we investigate the semantics of a fragment of the logic for pragmatics proposed by Bellin and Dalla Pozza in "A pragmatic interpretation of substructural logics" (Feferman Festschrift, ASL Lecture Notes in Logic 15, 2002). The logic deals with acts of assertion and acts of obligation, and it incorporates a rule that relates acts of obligation to acts of assertion via a notion of causal implication. As our main result we show that the logic is sound and complete with respect to a class of algebraic, Kripke, and categorical models.
Czasopismo
Rocznik
Tom
Strony
443-470
Opis fizyczny
bibliogr. 29 poz.
Twórcy
autor
- Department of Computer Science, Queen Mary University of London, London E1 4NS, Great Britain, kurt@dcs.qmul.ac.uk
Bibliografia
- [1] Bellin, G.: A system of natural deduction for GL, Theoria, 2, 1985, 89-114.
- [2] Bellin, G., Dalia Pozza, C: A pragmatic interpretation of substructural logics, in: Reflections on the Foundations of Mathematics, Essays in Honor of Solomon Feferman (W. Sieg, C. Talcott, Eds.), vol. 15 of Lecture Notes in Logic, ASL, 2002, 139-163.
- [3] Bellin, G., de Paiva, V. C. V., Ritter, E.: Extended Curry-Howard correspondence for a basic constructive modal logic, 2001, Preprint available online at http://profs.sci.univr.it/~bellin/papers.html.
- [4] Bellin, G., Ranalter, K.: A Kripke-style semantics for the intuitionistic logic of pragmatics ILP, Journal of Logic and Computation, 13(5), 2003, 755-775
- [5] Benton, P. N.: A mixed linear and non-linear logic: proofs, terms and models, in: Computer Science Logic 1994 (L. Pacholski, J. Tiuryn, Eds.), vol. 933 of Lecture Notes in Computer Science, Springer, 1994,121-135.
- [6] Bierman, G. M.: On Intuitionistic Linear Logic, Ph.D. Thesis, University of Cambridge, 1994.
- [7] Bierman, G. M., de Paiva, V. C. V.: On an intuitionistic modal logic, Studia Logica, 65(3), 2000, 383^416.
- [8] Blute, R., Cockett, J. R. B., Seely, R. A. G.: The logic of linear functors, Mathematical Structures in Computer Science, 12(4), 2002, 513-539.
- [9] Dalla Pozza, C: Una logica pragmatica per la concezione "espressiva" delle norme, in: Logica delle Norme (A. Martino, Ed.), SEU, Pisa, 1997.
- [10] Dalla Pozza, C, Garola, C: A pragmatic interpretation of intuitionistic propositional logic, Erkenntnis, 43(1), 1995, 81-109.
- [11] Gentzen, G.: Untersuchungen iiber das logische Schliessen I, II, Mathematische Zeitschrift, 39, 1935, 176-210,405-431.
- [12] Girard, J.-Y, Lafont, Y., Taylor, P.: Proofs and Types, Cambridge University Press, 1990.
- [13] Jacobs, B.: Semantics of weakening and contraction, Annals of Pure and Applied Logic, 69(1), 1994,73-106.
- [14] Jacobs, B.: Categorical Logic and Type Theory, North Holland, 1999.
- [15] Kanovich, M. I.: The complexity of Horn fragments of linear logic, Annals of Pure and Applied Logic, 69(2-3), 1994, 194-241.
- [16] Labrou, Y: Standardizing agent communication, in: Multi-Agent Systems and Applications (M. Luck, O. Stepankova, V. Marik, R. Trappl, Eds.), vol. 2086 of Lecture Notes in Computer Science, Springer, 2001, 74-97.
- [17] Levinson, S. C: Pragmatics, Cambridge University Press, 1983.
- [18] Mac Lane, S.: Categories for the Working Mathematician, second edition, Springer, 1998.
- [19] Maietti, M. E., Maneggia, P., de Paiva, V. C. V., Ritter, E.: Relating categorical semantics for intuitionistic linear logic, Applied Categorical Structures, 13(1), 2005, 1-36.
- [20] McBurney, P., Parsons, S.: Dialogue game protocols, in: Communication in Multiagent Systems: Agent Communication Languages and Conversation Policies (M.-P. Huget, Ed.), vol. 2650 of Lecture Notes in Computer Science, Springer, 2003, 269-283.
- [21] Moens, M.-A., Berni-Canani, U., Borceux, E: On regular presheaves and regular semi-categories, Cahiers de Topologie et Geometrie Differentielle Categoriques, 43(3), 2002, 163-190.
- [22] Moens, M.-A., Borceux, F.: On Azumaya graphs, Algebras and Representation Theory, 6(1), 2003, 71-95.
- [23] Pym, D. J., O'Hearn, P. W., Yang, H.: Possible worlds and resources: the semantics of BI, Theoretical Computer Science, 315(1), 2004, 257-305.
- [24] Ranalter, K.: Reasoning about Assertions, Obligations and Causality: On a Categorical Semantics for a Logic for Pragmatics, Ph.D. Thesis, Queen Mary, University of London, Submitted.
- [25] Restall, G.: An Introduction to Sub structural Logics, Routledge, 2000.
- [26] Schroder, L., Herrlich, H.: Free Adjunctions of Morphisms, Applied Categorical Structures, 8(4), 2000, 595-606.
- [27] Searle, J. R., Vanderveken, D.: Foundations of Illocutionary Logic, Cambridge University Press, 1985.
- [28] Troelstra, A. S., Schwichtenberg, H.: Basic Proof Theory, second edition, Cambridge University Press, 2000.
- [29] White, G. G.: Davidson and Reiter on Action, 2007, Accepted for publication in Fundamenta Informaticae.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0015-0084