Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 81, nr 1-3 | 257-273
Tytuł artykułu

Abstract Barycentric Algebras

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a new approach to the study of (real) barycentric algebras, in particular convex subsets of real affine spaces. Barycentric algebras are cast in the setting of two-sorted algebras. The real unit interval indexing the set of basic operations of a barycentric algebra is replaced by an LP-algebra, the algebra of ukasiewicz Product Logic. This allows one to define barycentric algebras abstractly, independently of the choice of the unit real interval. It reveals an unexpected connection between barycentric algebras and (fuzzy) logic. The new class of abstract barycentric algebras incorporates barycentric algebras over any linearly ordered field, the B-sets of G. M. Bergman, and E. G. Manes' if-then-else algebras over Boolean algebras.
Wydawca

Rocznik
Strony
257-273
Opis fizyczny
bibliogr. 32 poz.
Twórcy
Bibliografia
  • [1] G. M. Bergman, Actions of Boolean rings on sets, Algebra Universalis 28 (1991), 153-187.
  • [2] G. Birkhoff and J. D. Lipson, Heterogeneous algebras, J. Comb. Th. 8 (1970), 115-133.
  • [3] W. J. Blok, I. M. A. Ferreirim, On the structure of hoops, Algebra Universalis 43 (2000), 233-257.
  • [4] R. L. O. Cignoli, I. M. L. D'Ottaviano and D. Mundici, Algebraic Foundation of Many-valued Reasoning, Kluwer, Dordrecht, 2000.
  • [5] P. Cintula, A note to the definition of ŁΠ-algebras, preprint (2004), to appear in Soft Computing.
  • [6] F. Esteva, L. Godo and F. Montagna, The LΠ and LΠ1/2 logics: two complete fuzzy systems joining Łukasiewicz and product logics, Arch. Math. Logic 40 (2001), 39-67.
  • [7] J. A. Goguen and J. Meseguer, Completeness of many-sorted equational logic, Houston J. Math. 11 (1985), 307-334.
  • [8] S. P. Gudder, Convex structures and operational quantum mechanics, Comm. Math. Phys. 29 (1973), 249- 264.
  • [9] P. Hájek, Metamathematics of Fuzzy Logic, Kluver, Dordrecht, 1998.
  • [10] P. J. Higgins, Algebras with a scheme of operators, Math. Nachr. bf 27 (1963), 115-132.
  • [11] V. V. Ignatov, Quasivarieties of convexors, (in Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 29 (1985), 12-14.
  • [12] K. Isēki and S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica 23, 1-26.
  • [13] R. E. Jamison-Waldner, Functional representation of algebraic intervals, Pacific J. Math. 53 (1974), 399-423.
  • [14] K. A. Kearnes, Idempotent simple algebras, in Logic and Algebra, Proc. of theMagariMemorial Conference, Siena, 1994, Dekker, New York, 1996, pp. 520-572.
  • [15] K. Kearnes, Semilattice modes I: the associated semiring, Algebra Universalis 34 (1995), 220-272.
  • [16] H. Lugowski, Grundzüge der Universallen Algebra, Teubner, Leipzig, 1976.
  • [17] E. G. Manes, Adas and the equational theory of if-then-else, Algebra Universalis 30 (1993), 373-394.
  • [18] J. A. McCarthy, A basis for a mathematical theory of computation, in (P. Braffort and D. Hirschberg, eds.), Computer Programming and Formal Systems, Northe-Holland, 1993, 33-70.
  • [19] F.Montagna, An algebraic approach to propositional fuzzy logic, Journal of Logic, Language and Information 9 (2000), 91-124.
  • [20] F. Montagna, Subreducts of MV-algebras with product and product residuation, Algebra Universalis 53 (2005), 109-137.
  • [21] W. D. Neumann, On the quasivariety of convex subsets of affine spaces, Arch. Math. 21 (1970), 11-16.
  • [22] F. Ostermann and J. Schmidt, Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie, J. Reine Angew.Math. 224 (1966), 44-57.
  • [23] R. Pöschel, M. Reichel, Projection algebras and rectangular algebras, in General Algebra and Applications (eds. K. Denecke and H.-J. Vogel), Heldermann Verlag, Berlin, 1993, 180-194.
  • [24] K. Pszczoła, A. Romanowska, J. D. H. Smith, Duality for some free modes, Discussiones Mathematicae, 23 (2003), 45-61.
  • [25] A.B. Romanowska and J.D.H. Smith, Modal Theory, Heldermann, Berlin, 1985.
  • [26] A.B. Romanowska and J.D.H. Smith, On the structure of barycentric algebras, Houston J.Math. 16 (1990), 431-448.
  • [27] A.B. Romanowska and J.D.H. Smith, Modes, World Scientific, Singapore, 2002.
  • [28] L.A. Skornyakov, Stochastic algebras, Izv. Vyssh. Uchebn. Zaved. Mat. 29 (1985), 3-11.
  • [29] T.Stokes, Sets with B-action and linear algebra, Algebra Universalis 39 (1998), 31-43.
  • [30] T. Stokes, Radical classes of algebras with B-action, Algebra Universalis 40 (1998), 73-85.
  • [31] W. Wechler, Universal Algebra for Computer Scientists, Springer Verlag, Berlin, 1992.
  • [32] A. Zamojska-Dzienio,Medial modes and rectangular algebras, Comment.Math. Univ. Carolinae 47 (2006), 21-34.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0014-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.