Czasopismo
2007
|
Vol. 80, nr 1-3
|
125-146
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We show how properties of an interesting class of imperative programs can be calculated by means of relational modeling and symbolic computation. The ideas of [5, 26] are implemented using symbolic computations based on Maple [30].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
125-146
Opis fizyczny
bibliogr. 41 poz.
Twórcy
autor
autor
- Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada L8S 4K1, Canada, {carette,janicki}@mcmaster.ca
Bibliografia
- [1] S. A. Abramov, J. J. Carette, K. O. Geddes, and H. Q. Le, Telescoping in the Context of Symbolic Summation in Maple, Journal of Symbolic Computation 38 (4), 2004, pp. 1303-1326.
- [2] A. W. Appel, Modern Compiler Implementation: In ML, Cambridge University Press, New York, NY, USA, 1998.
- [3] H. Beki´c, Definable operations in general algebras and the theory of automata and flowcharts, Unpublished Manuscript, IBM Laboratory, Vienna 1969.
- [4] A. Blikle, An analysis of programs by algebraic means, In A. Mazurkiewicz, Z Pawlak (eds), Mathematical Foundation of Computer Science, Banach Center Publications, Vol. 2, pp. 167-213, Polish Scientific Publishers, Warsaw 1977.
- [5] A. Blikle, A. Mazurkiewicz, An algebraic approach to the theory of programs, algorithms, languages and recursiveness, Proc. of 1st MFCS (Mathematical Foundations of Computer Science), Jabłonna, Poland 1972.
- [6] J. Carette, R. Janicki, Y. Zhai, Program Verification by Calculating Relations, Proc. of 15th IASTED ASM'06 (Applied Simulation and Modeling), Rhodos, Greece 2006, pp.150-156, Acta Press.
- [7] T. E. Cheatham, J. A. Townley, Symbolic Evaluation of Programs: A look at Loop Analysis, Proc. of ACM Symposium on Symbolic and Algebraic Computation, 1976, pp. 90-96.
- [8] F. Chyzak, B. Salvy, Non-commutative Elimination in Ore Algebras Proves Multivariate Holonomic Identities, Journal of Symbolic Computation 26 (2), 1998, pp. 187-227.
- [9] F. Chyzak, B. Salvy, Gröbner Bases, Symbolic Summation and Symbolic Integration, in B. Buchberger, F.Winkler (eds.), Gröbner Bases and Applications, LondonMathematical Society Lecture Notes Series, Vol. 251, Cambridge University Press 1998, pp. 32-60.
- [10] R. Cytron, J. Ferrante, B. K. Rosen, M. N.Wegman, F. K. Zadeck, Efficiently computing static single assignment form and the control dependence graph, ACM Trans. Program. Lang. Syst., 13, 4 (1991), 451-490.
- [11] J. W. DeBakker, D. Scott, A Theory of Programs, Unpublished Manuscript, IBM Laboratory, Vienna 1969.
- [12] D. Detlefs, G. Nelson, J. B. Saxe, Simplify: A Theorem Prover for Program Checking, Journal of ACM, 53,3 (2005), 365-373.
- [13] O. Dragon, Reverse Engineering of Scientific Computation FORTRAN Code, Master Thesis, Dept. of Computing and Software, McMaster University, Hamilton, Canada 2006.
- [14] R. W. Floyd, Assigning Meaning to Programs, Proc. of 19th Symposium on Applied Mathematics, 1967, pp.19-32.
- [15] S. M. German and B. Wegbreit, A Synthesizer of Inductive Assertions, IEEE Trans. Software Eng., vol. 1 (1), 1975, pp. 68-75.
- [16] D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Comput. Surv. 23 (1), 1991, pp. 5-48.
- [17] C. A. R. Hoare, An Axiomatic Basis of Computer Programming, Comm. of ACM 12 (1969), 576-580.
- [18] R. Janicki, Analysis of Coroutines byMeans of Vectors of Coroutines, Fundamenta Informaticae, 2, 2 (1979), 289-316.
- [19] W. Kahan, Pracniques: further remarks on reducing truncation errors, Commun. of ACM, 8 (1), 1965.
- [20] E. Kaltofen, Greatest Common Divisors of Polynomials Given by Straight-Line Programs, Journal of the ACM, 35 (1), 1988, pp. 231-264.
- [21] M. Karr, Affine Relationships Among Variables of a Program, Acta Informatica, 6 (1976), 133-151.
- [22] S. Katz and Z. Manna, A Closer Look at Termination, Acta Informatica, 5 (1975), 333-352.
- [23] L. I. Kovács, T. Jebelean, Automated Generation of Loop Invariants by Recurrence Solving in Theorema, Proc. of SNASC'04 (Symbolic and Numeric Algorithms for Scientific Computing), 2004.
- [24] L. I. Kovács, T. Jebelean, Finding Polynomial Invariants for Imperative Loops in the Theorema System, Proc. of Verify'06 Workshop, IJCAR'06, The 2006 Federated Logic Conference, pp. 52-67.
- [25] D. Kozen, Kleene Algebras with tests, Transactions on Programming Languages and Systems 3, 19 (1997), 427-443.
- [26] A. Mazurkiewicz, Proving Algorithms by Tail Function, Information and Control, 18 (1971) 793-798.
- [27] A. Mazurkiewicz, Iteratively Computable Relations, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 20 (1972), 793-798.
- [28] A. Mazurkiewicz, Recursive Algorithms and Formal Languages, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 20 (1972), 799-803.
- [29] L. Meunier, B. Salvy, ESF: An Automatically Generated Encyclopedia of Special Functions, Proc. of ISSAC' 03, Philadelphia 2003. ACM Press. pp. 199-205.
- [30] M. B. Monagan and K. O. Geddes and K.M. Heal and G. Labahn and S. M. Vorkoetter,Maple Programming Guide, Springer Verlag, 1998.
- [31] Reverse Engineering at McMaster, http://www.cas.mcmaster.ca/_carette/ReverseEngineering
- [32] T. J. Parr, ANTLR, ANother Tool for Language Recognition, http://www.antlr.org/
- [33] E. Rodríguez-Carbonell, D. Kapur, Program Verification Using Automatic Generation of Invariants, Proc. Of ICTAC'04, Lecture Notes in Computer Science 3407, Springer 2005, pp. 325-340.
- [34] B. Salvy, P. Zimmermann, Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable, ACM Transactions on Mathematical Software, 20 (2), 1994, pp. 164-177.
- [35] D. Schmidt, Denotational Semantics, Allyn and Bacon, 1986.
- [36] B. Scholz, T. Fahringer, Advanced Symbolic Analysis for Compilers. Springer-Berlin, 2003.
- [37] J. V. Tucker, J. I. Zucker, Abstract versus concrete computation on metric partial algebras, ACM Trans. Comput. Logic 5 (4), 2004, 611-668.
- [38] B. Wegbreit, The Synthesis of Loop Predicates, Commun. of ACM 17, 2 (1974), 102-112.
- [39] S. Wolfram, The Mathematica Book, Cambridge University Press, 1999.
- [40] Y. Zhai, An Analysis of Programs by Symbolic Computations, Master Thesis, Dept. of Computing and Software, McMaster University, Hamilton, Canada 2006.
- [41] W. Zhou, J. Carette, D. J. Jeffrey and M. B. Monagan, Hierarchical representations with signatures for large expression managemen, Proc. of Artificial Intelligence and Symbolic Computation, Lecture Notes in Computer Science 4120, Springer 2006, pp. 254-268.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0014-0007