Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | [Z] 62, 11-12 | 1017-1036
Tytuł artykułu

Współczesne i przyszłe materiały wybuchowe

Autorzy
Warianty tytułu
EN
Contemporary and prospective explosives
Języki publikacji
PL
Abstrakty
EN
The replacement of black powder with nitro compounds in the middle of the 19th century revolutionized warfare, mining and civil engineering. The performance of the explosives that came into use at that time and which are still commonly used (nitroglycerine, nitrocellulose, trinitrotoluene) is three times higher than that of black powder. Within the next 150-year evolutionary development of explosives, their performance has been increased by about 60%. During that period, useful explosives were searched among organic compounds containing carbon, hydrogen, nitrogen and oxygen. The search was quite successful. For example stable caged nitroamines (HNIW, Fig. 3) were synthesized which densities are higher than 2 g/cm3 and detonation velocity exceeds 10 km/s. Recently, potential candidates for high energy density materials (HEDM) have been observed among meta-stable compounds (e.g. all-nitrogen compounds), molecular composites where fuel and oxidizer are mixed at a molecular level or nano-systems of reactive materials. It is assessed that in this way useful explosives can be produced with performance even ten times higher than that of HMX - the best explosive that is in use today. Such an increase in energy content would make possible miniaturization of ammunition and the fire power of small arms would become comparable to the contemporary artillery. This means not only enormous change in the battlefield tactics but also new threats of terrorist attacks on the critical infrastructure.
Wydawca

Rocznik
Strony
1017-1036
Opis fizyczny
bibliogr. 40 poz., wykr.
Twórcy
autor
Bibliografia
  • [1] G. Brown, Historia materiałów wybuchowych. Od prochu czarnego do bomby termojądrowej, Książka i Wiedza, Warszawa 2001.
  • [2] M. Hang. PNAS, 2006, 103, 5409.
  • [3] M. llushin. 1. Teslynsky, Russ. J. Chem., 1997. 41. 3.
  • [4] M. llushin, I. Teslynsky. Russ. J. Chem., 2001, 45, 72.
  • [5] M. llushin, et al.. Coordination complexes as inorganic primary explosives, 6"' Int. Seminar New Trends in Research of Energetic Materials, str. 146-152, Pardubice, Czech Republic, 2003.
  • [6] S. Cudziło, R. Szmigielski, Biul. WAT, 2000, 49, 12.
  • [7] M. Talwar. A. Agrawal, J. Chhabra. S. Asthana, J. Hazard. Mat. A, 2004, 113, 57.
  • [8] M. Talwar. A. Agrawal. J. Chhabra, S. Asthana , J. Hazard. Mat. A. 2004. 113. 27.
  • [9] M. Hiskey, V. Huynh, Patent Application Publication US 2006/0030715 Al, 2006.
  • [10] M. Lieberman, Ind. Eng. Chem. Prod. Res. Dev., 1985, 24, 436.
  • [11] V. Andrew, Primer detonator (variants), Patent RU 2 104 466C1, 1998.
  • [12] M. llushin, 1. Teslynsky, The influence of the structure of the salts ofazoles upon the processes of their thermal and laser initiation, 8th Int. Seminar New Trends in Research of Energetic Materials, str. 213-221. Pardubice. Czech Republic, 2005.
  • [13] M. llushin. I. Teslynsky, Russ. J. Appl. Chem.. 2000, 73, 1305.
  • [14] H. Östmark, High energy density materials (HEDM): overview, 9th Int. Seminar New Trends in Research of Energetic Materials, str. 231-250, Pardubice, Czech Republic, 2006.
  • [15] A. Sikder, N. Sikder, J. Hazard. Mat. A, 2004, 112, 1.
  • [16] H.R. Bricher, Properties of CL-20 based high explosives, Proc. of 29th International Annual Conference of ICT. Karlsruhe, Germany. 1998.
  • [17] P. Pagoria, Thermochimica Acta, 2002, 384, 187.
  • [18] J. Agrawal, Prog. Energy Combust Sci.. 1998, 24, 1.
  • [19] N. Sikder. J. Hazard. Mat. 2004, 113, 35.
  • [20] S. Cudziło, Z. Chyłek, Wiad. Chem., 2006, 60, 763.
  • [21] A.J. Bellamy, FOX-7 (l,l-Diammino-2,2-dinitroethene). Structure and Bonding. High Energy Density Materials. Springer-Verlag. Berlin-Heidelberg 2007.
  • [22] N. Kubota, Propeilants and explosives, Wiley-VCH Verlag GmbH & Co KgaA, Weinheim, 2007.
  • [23] G. Statton, B. Kossowski, Synthesis of cyclodextrin polymer (Poly CD), a raw material for insensitive, high energy and shock survivable explosives, Proc. of 29 th International Annual Conference of ICT, Karlsruhe, Germany, 1998.
  • [24] L. Chan. Advances in solid propel/ant formulations, Solid Propellant Chemistry Combustion and Motor Interior Ballistics, (Eds.: V Yang, B. Brill, W. Ren) Progress in Astronauics and Aeronautics 185, Chapter 1.7, AIAA, Washington DC, 2000.
  • [25] J. Louwers, J. Prop. Power, 1999, 15, 772.
  • [26] A. Provatas, Energetic polymers and plasticisers for explosive formulations - a review of recent advances, DSTO-TR-0966. Defence Science & Technology Organisation , Salisbury, SA, 2000.
  • [27] U. Teipel. ed.. Energetic materials -particle processing and characterization, str. 238, Wiley-VCH. Weinheim. Germany. 2005.
  • [28] B. Vogelsanger, B. Berger, Energetic materials - performance and safety, 36th International Annual Conference of 1CT, str. 1-15, Karlsruhe. Germany. 2005.
  • [29] A. Pivkina, Propellants, Explos. Pyrotech. 29, 39, 2004.
  • [30] S.F. Son. Mat. Res. Soc. Symp. Proc. 2004. 800. 161.
  • [31] A. Gash. Nanostructured energetic materials with sol-gel chemistry. Materials Research Society Fall Meeting, Boston, MA, USA. 2003.
  • [32] G.A. Fox, et al.. Chemistry and processing of nanostructured materials, Lawrence Livermore National Laboratory, USA. Report UCRL-1D-146820, 2002.
  • [33] K..J. Blobaum, et al., J. Appl. Phys., 94, 2915, 2003.
  • [34] L. Menon. et al.. Appl. Phys. Lett.. 84, 4735. 2004.
  • [35] S. Cudzilo, W. Kiciński, Wiad. Chem., 2007. 61. 189.
  • [36] R.A. Schaefer. S.M. Nicolish, Development and evaluation of new high blast explosives, Proce-edings of 36th International ICT-Conference, Karlsruhe. 2005.
  • [37] Thermobaric explosives, in Advanced Energetic Materials, The National Academic Press. Washington 2004.
  • [38] M.L. Chan, G.W. Meyers, Advanced thermobaric explosive compositions. Patent US 6,955,732 Bl,2005.
  • [39] M.L. Chan, et al., Castable thermobaric explosive formulations. Patent US 6,969.434 Bl, 2005.
  • [40] R.H. Guirguis, Reactively induced fragmenting explosives, Patent US 6,846.372 Bl, 2005
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0013-0077
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.