Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 34, no. 3 | 299-307
Tytuł artykułu

Characteristics of microbial communities in biomethanization processes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biomethanization of mixed organic substances is the effect of coexistence of numerous groups of microorganisms. Methanogenic degradation of such substances involves at least three different trophic groups of anaerobes, namely fermentative heterotrophs, proton-reducing syntrophs and methanogenic archaea. The development of molecular techniques allowed to detect some new groups of bacteria and archea, which often stay unculturable. The cultivation of uncultured organisms is of great significance in recognizing the function of these organisms. In the past few years, newly discovered microorganisms have been successfully isolated from anaerobic sludges, and the information regarding their physiology in connection with phylogeny is updated regularly.
Słowa kluczowe
Wydawca

Rocznik
Strony
299-307
Opis fizyczny
bibliogr. 68 poz.
Twórcy
autor
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland., a.rozej@wis.pol.lublin.pl
Bibliografia
  • [1] Angenent, LT, Sung, S, Raskin, L. 2002. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res. 36 (18), 4648-4654.
  • [2] Blaszczyk M. Mikroorganizmy w ochronie środowiska, pp. 74-76, Wyd. Naukowe PWN, W-wa 2007.
  • [3] Boone DR, Bryant MP. 1980. Propionate-degrading bacterium, Syntrophobacter wolimi sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40, 626-32.
  • [4] Calli B, Mertoglu B., Inane B., Yenigun O. 2005. Methanogenic diversity in anaerobic bioreactors under extremely high ammonia levels. Enzyme and Microbial Technology, 37, 448-455.
  • [5] Chen S, Liu X, Dong X. 2005. Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate- oxidizing bacterium isolated from UASB reactors. Int. J. Syst. Evol. Microbiol. 55, 1319-1324.
  • [6] Chen SY, Dong XL. 2005. Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int. J. Syst. Evol. Microbiol. 55. 2257-2261.
  • [7] Chin HI, Lukow T, Stubner S, Conrad R. 1999. Structure and function of the methanogenic archeal community in stable cellulose-degrading enrichment cultures at two different temperatures (15 and 30°C). FEMS Microbiol. Ecol. 30. 313-326.
  • [8] Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A. 2005. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ. Microbiol. 7. 1104-1115.
  • [9] Chouari R, Le Paslier D, Dauga C, Daegelen P, Weissenbach J, Sghir A. 2005. Novel major bacterial candidate division within a municipal anaerobic sludge digester. Appl. Environ. Microbiol. 71. 2145-2153.
  • [10] Collins G, O'Connor L, Mahony T, Gieseke A, de Beer D, O'Flaherty V. 2005. Distribution, localization, and phylogeny of abundant populations of Crenarchaeota in anaerobic granular sludge. Appl. Environ. Microbiol. 71. 7523-7527.
  • [11] Cord-Ruwisch R, Lovley DR, Schink B. 1998. Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl. Environ. Microbiol. 64. 2232-2236.
  • [12] de Bok FAM., Plugge CM, Stams AJM, 2004. Interspecies electron transfer in methanogenic propionate degrading consortia. Wat. Res. 38. 1368-1375.
  • [13] de Bok FAM, Harmsen HIM, Plugge CM, de Vries MC, Akkermans ADL, de Vos WM, Stams AJM. 2005. The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int. J. Syst. Evol. Microbiol. 55. 1697-1703.
  • [14] Diaz EE, Stams AJA, Amils R, Sanz JL. 2006. Phenotypic properties and microbial diversity of methanogenic granules from a fullscale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl. Environ. Microbiol. 72. 4942-4949.
  • [15] Fernandez A, Huang S, Seston S, Xing J, Hickey R, Criddle C, Tiedje J. 1999. How stable is stable? Function versus community composition. Appl. Environ. Microbiol. 65. 3697-3704.
  • [16] Garcia JL, Patel BKC, Olivier B. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe. 6. 205-226.
  • [17] Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R. 1997. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63. 2802-2813.
  • [18] Grotenhuis JTC, Smit M, Plugge CM, Xu YS, Vanlammeren AAM, Stams AJM, Zehnder AJB. 1991. Bacteriological composition and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol. 57. 1942-1949.
  • [19] Harmsen HJM, van Kuijk BLM, Plugge CM, Akkermans ADL, de Vos WM, Stams AJM. 1998. Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int. J. Syst. Bacteriol. 48. 1383-1387.
  • [20] Harmsen HJM, Wullings B, Akkermans ADL, Ludwig W, Stams AJM. 1993. Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch. Microbiol. 160. 238-240.
  • [21] Hattori, S, Kamagata, Y, Hanada, S, Shoun H. 2000. Thermacetogenium phaeum gen. nov., sp nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int. J. Syst. Evol. Micrbiol. 50 (4), 1601-1609.
  • [22] Hugenholtz P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol. 3. REVIEWS 0003.1-0003.8.
  • [23] Hulshoff Pol LW, De Castro Lopes SI, Lettinga G, Lens PNL. 2004. Anaerobic sludge granulation, Water Res. 38. 1376-1389.
  • [24] Huser BA, Wuhrmann K, Zehnder AJB. 1982. Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium, Arch. Microbiol. 132. 1-9.
  • [25] Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H. 2002. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionateoxidizing bacterium. Int. J. Syst. Evol. Microbiol. 52. 1729-1735.
  • [26] Imachi H, Sekiguchi Y, Kamagata Y, Loy A, Qiu YL, Hugenholtz P, Kimura N, Wagner M, Ohashi A: Harada H. 2006. Non-sulfatereducing, syntrophic bacteria affiliated with Desulfotomaculum cluster 1 are widely distributed in methanogenic environments. Appl. Environ. Microbiol. 72. 2080-2091.
  • [27] Imachi H, Sekiguchi Y, Kamagata Y, Ohashi A, Harada H. 2000. Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl. Environ. Microbiol. 66. 3608-3615.
  • [28] Ishii S, Kosaka T, Hori K, Hotta Y, Watanabe K. 2005. Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl. Environ. Microbiol. 71.7838-7845.
  • [29] Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, Mclnerney MJ. 1999, Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch. Microbiol. 171. 107-114.
  • [30] Jiang B, Parshina SN, van Doesburg W, Lomans BP, Stams AJM. 2005. Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. Int. J. Syst. Evol. Microbiol. 55. 2465-2470.
  • [31] Joulian C, Patel BKC, Ollivier B, Garcia JL, Roger PA. 2000. Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield. Int. J. Syst. Evol. Microbiol. 50. 525-528.
  • [32] Keyser M., Witthuhn RC, Lamprecht C, Coetzee MPA, Britz TJ. 2006. HCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst. Appl. Microbiol. 29. 77-84.
  • [33] Kotsyurbenko O.R. 2005. Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. FEMS Microbiol. Ecol. 53. 3-13.
  • [34] Kotsyurbenko OR, Glagolev MV Nozhevnikova AN, Conrad R. 2001. Competition between homoacetogenic bacteria and methanogenic archea for hydrogen at low temperature. FEMS Microbiol. Ecol. 38. 153-159.
  • [35] Leclerc M, Delgenes JP, Godon JJ. 2004. Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ. Microbiol. 6. 809-819.
  • [36] Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR. 1999.. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int. J. Syst. Bacteriol. 49. 545-556.
  • [37] Lomans BP, Maas R, Luderer R, Op den Camp HIM, Pol A, van der Drift C, Vogels GD. 1999. Isolation and characterization of Methanomethylovorans hollandica gen nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl. Environ. Microbiol. 65. 3641-3650.
  • [38] Lyimo TJ, Pol A, Op den Camp HJM, Harhangi HR, Vogels GD. 2000. Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. Int. J. Syst. Evol. Microbiol. 50. 171-178.
  • [39] Ma K, Liu XL, Dong XZ. 2005. Methanobacterium beijingense sp. nov., a. novel methanogen isolated from anaerobic digesters. Int. J. Syst. Evol. Microbiol. 55. 325-329.
  • [40] Ma K, Liu XL, Dong XZ. 2006. Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. Int. J. Syst. Evol. Microbiol. 56. 127-131.
  • [41] McHugh, S, Carton, M, Mahony, T, O_Flaherty V. 2003. Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol. Lett. 219 (2), 297-304.
  • [42] Mori K, Yamamoto H, Kamagata Y, Hatsu M, Takamizawa K. 2000. Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site. Int. J. Syst. Evol. Microbiol. 50. 1723-1730.
  • [43] Narihiro T., Sekiguchi Y. 2007. Microbial communities in anaerobic digestion processes for waste and waste water treatment: a microbiological update. Curr. Opin. Biotechnol. 18. 273-278.
  • [44] Nie Y Q, Liu H, Du GC, Chen J. 2007. Enhancement of acetate production by a novel coupled syntrophic acetogenesis with homoacetogenesis process. Process Biochem. 42. 599-605.
  • [45] Plugge CM, Balk M, Stams AJM. 2002. Desulfotomaculum thermobenzoicum subsp thermosyntrophicum subsp nov., a thermophilic, syntrophic, propionate-oxidizing, sporeforming bacterium. Int. J. Syst. Evol. Microbiol. 52. 391-399.
  • [46] Qiu YL, Sekiguchi Y, Hanada S, Imachi H, Tseng IC, Cheng SS, Ohashi A, Harada H, Kamagata Y. 2006. Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens. Arch. Microbiol. 185.172-182.
  • [47] Qiu YL, Sekiguchi Y, Imachi H, Kamagata Y, Tseng IC, Cheng SS, Ohashi A, Harada H. 2003. Sporotomaculum syntrophicum sp. nov., a novel anaerobic, syntrophic benzoate-degrading bacterium isolated from methanogenic sludge treating wastewater from terephthalate manufacturing. Arch. Microbiol. 179. 242-249.
  • [48] Qiu YL, Sekiguchi Y, Imachi H, Kamagata Y, Tseng IC, Cheng SS, Ohashi A, Harada H. 2004. Identification and isolation of anaerobic, syntrophic phthalate isomer-degrading microbes from methanogenic sludges treating wastewater from terephthalate manufacturing. Appl. Environ. Microbiol. 70. 1617-1626.
  • [49] Raskin L, Poulsen LK, Noguera DR, Rittmann BE, Stahl DA. 1994. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 60 (4), 1241 - 1248.
  • [50] Roest K, Heilig HGHJ, Smidt H, de Vos WM, Stams AJM, Akkermans ADL. 2005. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst. Appl. Microbiol. 28. 175-185.
  • [51] Sawayama S, Tsukahara K, Yagishita T. 2006. Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester. Biores. Technol. 97. 69-76.
  • [52] Sawayama S, Tada C, Tsukahara K, Yagishita T. 2004. Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. J. Biosci. Bioeng. 97 (1), 65-70.
  • [53] Schink B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61.262-280.
  • [54] Sekiguchi Y, Imachi H, Susilorukmi A, Muramatsu M, Ohashi A, Harada H, Hanada S, Kamagata Y. 2006. Tepidanaerobacter syntrophicus gen. nov., sp. nov., an anaerobic, moderately thermophilic, syntrophic alcohol-and lactate-degrading bacterium isolated from thermophilic digested sludges. Int. J. Syst. Evol. Microbiol. 56. 1621-1629.
  • [55] Sekiguchi Y, Kamagata Y, Harada H. 2001a. Recent advances in methane fermentation technology. Curr. Opin. Biotechnol. 12. 277-282.
  • [56] Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H. 2000. Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int. J. Syst. Evol. Microbiol. 50.771-779.
  • [57] Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K. 1998. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology. 144. 2655-2665.
  • [58] Sekiguchi Y, Takahashi H, Kamagata Y, Ohashi A, Harada H. 2001b. In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl. Environ. Microbiol. 67. 5740-5749.
  • [59] Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y. 2003. Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level.. Int. J. Syst. Evol. Microbiol. 53.1843-1851.
  • [60] Siriwongrungson V, Zeng RJ, Angelidaki I. 2007. Homoacetogenesis as the alternative pathway for H2 sink during fhermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Wat. Res. 41. 4204-4210.
  • [61] Wallrabenstein C, Hauschild E, Schink B. 1994. Pure culture and cytological properties of Syntrophobacter wolinii. FEMS Microbiol. Lett. 123. 249-254.
  • [62] Wasserfallen A, Nolling J, Pfister P, Reeve J, Coway de Macario E. 2000. Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus com[b.nov., Methanothermobacter wolfeii comb, nov., and Methanothermobacter marburgensis sp. nov. Int. J. Syst. Evol. Microbiol. 50. 43-53.
  • [63] Wu C, Liu X, Dong X. 2006. Syntrophomonas erecta subsp. sporosyntropha subsp. nov., a spore-forming bacterium that degrades short chain fatty acids in co-culture with methanogens. Syst. Appl. Microbiol. 29. 457- 462.
  • [64] Wu C, Liu X, Dong X. 2006. Syntrophomonas cellicola sp. nov., a spore-forming syntrophic bacterium isolated from a distilledspirit- fermenting cellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov. Int. J. Syst. Evol. Microbiol. 56. 2331-2335.
  • [65] Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y. 2006. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 56. 1331-1340.
  • [66] Yamada T, Sekiguchi Y, Imachi H, Kamagata Y, Ohashi A, Harada H. 2005. Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl. Environ. Microbiol. 71. 7493-7503.
  • [67] Zhang C, Liu X, Dong X. 2004. Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int. J. Syst. Evol. Microbiol. 54. 969-973.
  • [68] Zhang C, Liu X, Dong X. 2005. Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically degrades short-chain fatty acids. Int. J. Syst. Evol. Microbiol. 55. 799-803
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0013-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.