Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 34, no. 3 | 229-238
Tytuł artykułu

Impact of activated sludge flocs properties after sonication in relation with heavy metal uptake

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of activated sludge sonication on floes surface properties and heavy metal uptake was investigated. Negative surface charge and specific surface area were estimated by correlation with dye adsorption whereas relative hydrophobicity was measured by adhesion to hexadecane. Experimental results show that ultrasound treatment leads to a simultaneous increase of specific surface area and availability of negatives and/or hydrophilic sites. Thus, fixation sites for heavy metal uptake are made free by sonication. Both increase of specific surface area and fixation sites availability leads to an increase of uptake of Cd(II). For Cu(II), organic matter released in soluble phase during the treatment acts as a ligand and limits adsorption on floes surface.
Wydawca

Rocznik
Strony
229-238
Opis fizyczny
bibliogr. 40 poz., tab., wykr.
Twórcy
autor
  • Groupement de Recherche Eau Sol Environnement, Universite de Limoges, 16 rue Atlantis, Pare ESTER Technopóle, 87068 Limoges Cedex Tel. : +335 55 42 36 61 ; fax : +335 55 42 36 62., casellas@ensil.unilim.fr
autor
autor
  • Groupement de Recherche Eau Sol Environnement, Universite de Limoges, 16 rue Atlantis, Pare ESTER Technopóle, 87068 Limoges Cedex Tel. : +335 55 42 36 61 ; fax : +335 55 42 36 62., casellas@ensil.unilim.fr (M. Casellas)
Bibliografia
  • [1] AFNOR, NF T 90-105, Qualite de l'eau - dosage des matieres en suspension - mćthode par centrifugation, Association francaise de normalisation, Paris, 1997.
  • [2] Arican, B., Gokcay, C.F., Yetis, U., 2002. Mechanistics of nickel sorption by activated sludge. Process Biochemistry 37, 1307-1315.
  • [3] Bougrier, C. Carrere, H., Delgenes, J.P., 2005. Solubilisation of waste-activated sludge by ultrasonic treatment. Chemical Engineering Journal 106, 163-169.
  • [4] Boyette, S.M., Lovett, J.M., Gaboda, W.G., Soares, J.A., 2001. Cell surface and exopolymer characterization of laboratory stabihzed activated sludge from a beverage bottling plant. Water Science and Technology 43, 175-184.
  • [5] Cao, X.Q., Chen, J., Cao, Y.L., Zhu, J.Y., Hao, X.D., 2006. Experimental study on sludge reduction by ultrasound. Water Science and Technology 54, 87-93.
  • [6] Chipasa, K.B., 2003. Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Management 23,135-143.
  • [7] Dewil, R., Baeyens, J., Goutvrind, R., 2006. Ultrasonic treatment of waste activated sludge. Environmental Progress 25, 121-128.
  • [8] Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350-356.
  • [9] Figueroa, L.A., Silverstein, J.A., 1989. Ruthenium red adsorption method for measurement of extracellular polysaccharides in sludge floes. Biotechnology and Bioengineering 33, 941-947.
  • [10] Frelund, B., Palmgren, R., Keiding, K., Nielsen, P.H., 1996. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research 30, 1749-1758.
  • [11] Gonze, E., Pillot, S., Valette, E., Gonthier, Y., Bernis, A., 2003. Ultrasonic treatment of an aerobic activated sludge in a batch reactor. Chemical Engineering and Processing 42,965-975.
  • [12] Guibaud, G., Comte, S., Bordas, F., Dupuy, S., Baudu, M., 2005. Comparison of the complexation potential of extracellular polymeric substances (eps), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59, 629-638.
  • [13] Guibaud, G., Tixier, N., Bouju, A., Baudu, M., 2003. Relation between extracellular polymers' composition and its ability to complex cd, cu and pb. Chemosphere 52, 1701-1710.
  • [14] Gulnaz, O., Saygideger, S., Kusvuran, E., 2005. Study of cu(ii) biosorption by dried activated sludge: effect of physico-chemical environment and kinetics study. Journal of Hazardous Materials 120, 193-200
  • [15] Hammaini, A., Ballester, A., Blazquez, M.L., Gonzalez, F., Munoz, ]., 2002. Effect of the presence of lead on the biosorption of copper, cadmium and zinc by activated sludge. Hydrometallurgy 67, 109-116.
  • [16] Hammaini, A., Gonzalez, F., Ballester, A., Blazquez, M.L., Munoz, J.A., 2003. Simultaneous uptake of metals by activated sludge. Minerals Engineering 16, 723-729.
  • [17] Jin, B., Wilen, B.M., Lant, P., 2003. A comprehensive insight into floe characteristics and their impact on compressibility and settleability of activated sludge. Chemical Engineering Journal 95,221-234.
  • [18] Karvelas, M., Katsoyiannis, A., Samara, C, 2003. Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere 53, 1201-1210.
  • [19] Katsoyiannis, A., Samara, C, 2007. The fate of dissolved organic carbon (doc) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Environmental Science and Pollution Research 14, 284-292.
  • [20] Kim, Y.U., Ha, J., Yoon, K.Y., Lee, S.H., 2004. Effect of ultrasound on sludge from water treatment plant. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 43, 7362-7363.
  • [21] Lazzari, L., Sperni, L., Benin, P., Pavoni, B., 2000. Correlation between inorganic (heavy metals) and organic (pebs and pahs) micropollutant concentrations during sewage sludge composting processes. Chemosphere 41, 427-435.
  • [22] Lowry, E.H., Rosebrough, N.J., Lewis Far, R.A., Randall, R.J., 1951. Protein measurement with the folin phenol reagent. Journal of biological chemistry 193, 265-275.
  • [23] Lowen, M., Piirtola, L.. Characterization of activated sludge floes. In Proceedings of a polish-Swedish seminar, 1998, Nowy-Targ. Bengt Hultman and Jerzy Kurbiel (Ed.),.
  • [24] Mao, T., Show, K.Y., 2006. Performance of high-rate sludge digesters fed with sonicated sludge. Water Science and Technology 54, 27-33.
  • [25] Mikkelsen, L.H., 2003. Applications and limitations of the colloid titration method for measuring activated sludge surface charges. Water Research 37, 2458-2466.
  • [26] Na, S., Kim, Y.U., Khim, J., 2007. Physiochemical properties of digested sewage sludge with ultrasonic treatment. Ultrasonics Sonochemistry 14, 281-285.
  • [27] Onyeche, T.I., Schliifer, O., Bormann, H., Schroder, C, Sievers, M., 2002. Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion. Ultrasonics 40, 31-35.
  • [28] Ozbelge, T.A., Ozbelge, H.A., Tursun, M., 2005. Effects of hydraulic residence time on metal uptake by activated sludge. Chemical Engineering and Processing 44, 23-32.
  • [29] Scancar, J., Milacic, R., Strazar, M., Burica, O., 2000. Total metal concentrations and partitioning of cd, cr, cu, fe, ni and zn in sewage sludge. Science of the Total Environment 250, 9-19.
  • [30] Smith, P.G., Coackley, P., 1983. A method for determining specific surface area of activated sludge by dye adsorption. Water Research 17, 595-598.
  • [31] Sorensen, B.L., Wakeman, R.J., 1996. Filtration characterisation and specific surface area measurement of activated sludge by rhodamine b adsorption. Water Research 30, 115-121.
  • [32] Tiehm, A., Nickel, K., Zellhom, M., Neis, U., 2001. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Research 35, 2003-2009.
  • [33] Wang, F., Lu, S., Ji, M., 2006. Components of released liquid from ultrasonic waste activated sludge disintegration. Ultrasonics Sonochemistry 13, 334-338.
  • [34] Wang, J., Huang, C.P., Allen, H.E., 2003. Modeling heavy metal uptake by sludge particulates in the presence of dissolved organic matter. Water Research 37,4835-4842.
  • [35] Wang, J., Huang, C.P., Allen, H.E., Poesponegoro, I., Poesponegoro, H., Takiyama, L.R., 1999. Effects of dissolved organic matter and ph on heavy metal uptake by sludge particulates exemplified by copper(ii) and nickel(ii): three-variable model. Water Environment Research 71,139-147.
  • [36] Wilen, B.M., Jin, B., Lant, P., 2003. The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Research 37, 2127-2139.
  • [37] Yoon, S.H., Kim, H.S., Lee, S., 2004. Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production. Process Biochemistry 39,1923-1929.
  • [38] Yuncu, B., Sanin, F.D., Yetis, U., 2006. An investigation of heavy metal biosorption in relation to c/n ratio of activated sludge. Journal of Hazardous Materials 137,990-997.
  • [39] Zhang, P., Zhang, G., Wang, W., 2007. Ultrasonic treatment of biological sludge: floe disintegration, cell lysis and inactivation. Bioresource Technology 98, 207-210.
  • [40] Odegaard, H., 2004. Sludge minimization technologies - an overview. Water Science and Technology 49,31-40.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0013-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.