Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 34, no. 3 | 49-61
Tytuł artykułu

Characterization of the biomethanization process in selected waste mixtures

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to show the basic principles of the anaerobic digestion process. All the stages of degradation, such as hydrolysis, acidogenesis, acetogenesis and methanogenesis are characterized. Biodegradable organic matter consists of three main types of substances: carbohydrates, proteins and lipids; the metabolic pathways of their decomposition are described. The last part of the paper presents the co-digestion process, its benefits and technological parameters required to mate that process attractive from an economical and environmental point of view.
Wydawca

Rocznik
Strony
49-61
Opis fizyczny
bibliogr. 44 poz., wykr.
Twórcy
  • Lublin University of Technology, Faculty of Environmental Engineering, 20-618 Lublin, ul. Nadbystrzycka 40 B, Poland
autor
  • Lublin University of Technology, Faculty of Environmental Engineering, 20-618 Lublin, ul. Nadbystrzycka 40 B, Poland
Bibliografia
  • [1]Alatriste-Mondragon F., Samar P., Cox H.H.J., Ahring B.K. and Iranpour R. (2006). Anaerobic codigestion of municipal, farm and industrial organic wates: a survey of recent literature. Water Environment Research 78(6), 607-636.
  • [2] Alvarez R., Villca S. and Liden G. (2006). Biogas production from llama and cow manure at high altitude. Biomass and Bioenergy 30, 66-75.
  • [3] Alvarez R., Liden G. (2008). Semi-continuous co-digestion of solid slaughterhouse waste, manure and fruit and vegetable waste. Renewable Energy 33, 726-734.
  • [4] Angelidaki I. and Sanders W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Biotechnology 3(2), 117-129.
  • [5] Boubaker F. and Ridha B.C. (2007). Anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a tubular digester at mesophilic temperature. Bioresource Technology 08, 769 774.
  • [6] Braun R., Brachtl E. and Grasmug M. (2003). Codigestion of proteinaceous industrial waste. Applied Biochemistry and Biotechnology 109, 139-153.
  • [7] Bonn I., Batstone D.J., Bjornsson L. and Mattiasson B. (2002). Evaluation of aceticlastic methanogenesis at low temperatures: microbial ecology from a technological perspective. 7th FAO/SCREN-workshop, Moscow 2002, ed. S. Kalyuzhnyi, 1, 33-40.
  • [8] Bolzonella D., Battistoni P., Susini C. and Cecchi F. (2006). Anaerobic digestion waste activated sludge and OFMSW: the experiences of Viareggio and Trevisio plants (Italy). Water Science and Technology 58(3), 203-211.
  • [9] Callaghan F.J., Wase D.J., Thayanithy K. and Forster C.F. (1999). Co-digestion of waste organic solids: batch studies. Bioresource Technology 67(2), 117-122.
  • [10] Cammarota M.C. and Freire D.M.G. (2006). A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresource Technology 97, 2195-2210.
  • [11] Capela I., Rodrigues A., Silva F., Nadais H. and Arroja L. (2008). Impact of industrial sludge and cattle manure on anaerobic digestion of the OFMSW under mesophilic conditions. Biomass and Bioenergy 32(3), 245-251.
  • [12] Cecchi F., Pavan P. and Mata-Alvarez J. (1996). Anaerobic co-digestion of sewage sludge: application to the macroalgae from the Venice lagoon. Resources, Conservation and Recycling 17, 57-66.
  • [13] Dinsdale R.M, Premier G.C, Hawkez F.R. and Hawkez D.L. (1999). Two-stage anaerobic co-digestion of waste activated sludge and fruit/vegetable waste using inclined tubular digesters. Bioresource Technology 72(2), 159-168.
  • [14] Eriksson T., Karlsson J. and Tjemeld F. (2002). A model explaining declining rate in hydrolysis of lignocellulose substrates with Cellobiohydrolase I (Cel7A) and Endoglucanase I (Cel7B) of Trichoderma reesei. Applied Biochemistry and Biotechnology 101, 41-59.
  • [15] Fernandez-Bolanos J., Felizon B., Heredia A., Rodriguez R., Guillen R. and Jimenez A. (2001). Steam-explosion of oil stones: hemicellulose soluhilizution and enhancement of enzymatic hydrolysis of cellulose. Bioresource Technology 79, 53-61.
  • [16] Gallert and Winter J. (2005). Bacterial metabolism in wastewater treatment system, in Environmental Biotechnology. Concepts and Application, (ed.) Jordening H.-J. and Winter J., Wiley-VCH Verlag GmbH&Co. KgaA, Weinheim, 16-23.
  • [17] Grady L., Daigger G.T. and Lim H.C. (1999). Biological Wastewater Treatment Marcel Dekker, Inc, New York, 599-667.
  • [18] Gomez X., Cuetos M.J., Cara J., Moran A. and Garcia A.I. (2006). Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes. Conditions for mixing and evaluation of the organic loading rate.Renewable Energy 31, 2017-2024.
  • [19] Hamzawi N., Kennedy K.J and McLean D.D. (1998). Anaerobic digestion of co-mingled municipal solid waste and sewage sludge. Water Science and Technology 38(2), 127-132.
  • [20] Hansen K.H., Angelidaki I. and Ahring B.K (1998). Anaerobic digestion of swine manure: inhibition by ammonia. Water Research 32(1), 5-12.
  • [21] Hartmann H., Angelidaki I. and Ahring B.K. (2003). Co-digestion of the organic fraction of municipal waste with other waste types, in Biomethanizatton of the Organic Fraction of Municipal Solid Waste, (ed.) Mata-Alvarez J., IWA Publishing, London, 181-199.
  • [22] Kashyap D.R., Dadhich K.S. and Sharma S.K. (2003). Biomethanation under psychrophilic conditions: a review. Bioresource Technology 87, 147-153.
  • [23] Kayhanian M. and Tchobanoglous G. (1992). Computation of C:N ratios for various organic fractions. Biocycle 33(5), 58-60.
  • [24] Kayhanian M. and Rich D. (1995). Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements. Biomass and Bioenergy 8(6), 433-444.
  • [25] Mata-Alvarez J. (2003). Fundamentals of the anaerobic digestion process, in Biomethanization of the Organic Fraction of Municipal Solid Waste, (ed.) Mata-Alvarez J., IWA Publishing, London, 1-20.
  • 26] Milich L. (1999). The role of methane in global warming: where might mitigation strategies be focused?. Global Environment Change 9, 179-201.
  • [27] Pohland F.G. (1992). in Design of Anaerobic Processes for the Treatment of Industrial and Municipal Wastes (ed. Malina J. F. and Pohland F.G.). Water Quality Management vol.7, Technomic Publishing Co. Lancaster PA.
  • [28] Rintala I. A. and Jarvinen K.T. (1996). Full-scale mesophilic anaerobic co-digestion of municipal solid waste and sewage sludge: methane production characteristics. Waste Management and Research 14(2), 163-170.
  • [29] Scharff H. and Jacobs J. (2006). Applying guidance for methane emission estimation for landfills. Waste Management 26, 417-429.
  • [30] Schwarz W.H. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Applied Microbiology and Biotechnology 56, 634-649.
  • [31] Shimizu K., Sudo K., Ono H., Ishihara M., Fuji T. and Hishiyama S. (1998). Integrated process for total utilization of wood components by steam-explosion pretreatment. Biomass and Bioenergy 14(3), 195-203.
  • [32] Shin H.S. and Youn J.H. (2005). Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16, 33-44,
  • [33] Siegrist H., Renggli D. and Gujer W. (1993). Mathematical modelling of anaerobic mesophilic sewage treatment. Water Science and Technology 27(2), 25-36.
  • [34] Siriwongrungson V., Zeng R.J. and Angelidaki I. (2007). Homoacetogenesis as the alternative pathway for H_2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogensis. Water Research 41,4204-4210.
  • [35] Sosnowski P., Wieczorek A. and Ledakowicz S. (2003). Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid waste. Advances in Environmental Research 7, 609-616.
  • [36] Sosnowski P., Klepacz-Smolka A., Kaczorek K. and Ledakowicz S. (2008). Kinetic investigations of methane co-fermentation of sewage sludge and organic fraction of municipal solid waste. Bioresource Technology 99, 5731-5737.
  • [37] Sun X.F., Xu F., Sun R.C., Wang Y.X., Fowler P. and Baird M.S. (2004). Characteristics of degraded lignins obtained from steam exploded wheat straw. Polymer Degradation and Stability 86. 245-256.
  • [38] Tchobanoglous G., Theisen H. and Vigil S. (1993). Integrated Solid Waste Management. McGraw- Hill INC., New York.
  • [39] Themelis N.J. and Ulloa P.A. (2007). Methane generation in landfills. Renewable Energy 32, 1243-1257.
  • [40] Wong K.K.Y. and Malinger U. (1999). Substrate hydrolysis by combinations of Trichoderma xylanes. World of Microbiology and Biotechnology 15, 23-26.
  • [41] Wuebbles D.J. and Hayhoe K. (2002). Atmospheric methane and global change. Earth-Science Reviews 57, 177-210.
  • [42] Yadvika, Santosh, Sreekrishnan T.R., Sangeeta K. and Vineet R. (2004). Enhancement of biogas production from solid substrates using different techniques - a review. Bioresource Technology 95, 1-10.
  • [43] Yen H.-W., Brane D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology 98, 130-134.
  • [44] Yu H.Q. and Fang H.P. (2003). Acidogenesis of gelatin-rich wastewater in an upflow anaerobic reactor: influence pH and temperature. Water Research 37,55-66.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0013-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.