Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2004 | No. 46 (3) | 347-364
Tytuł artykułu

Preliminary results of lidar based studies of the aerosol vertical distribution in the lower troposphere over urban coastal areas

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reports the results of lidar measurements performed in the lower troposphere during several measurement sessions in Athens (Greece) in 2000. For the sake of comparison, results of a similar study performed in Kołobrzeg (Poland) in 2001 are also given. These data indicate that the exhaust gases produced by motor transportation in the cities resulted in the formation of an inversion layer. The rate of convection of the inversion layer depends on the intensity of sunlight, the strength of winds and the morphology of the land. The inversion layer reaches the highest altitudes in the middle of summer, lower in early and late summer and the lowest in autumn. Over the sea the inversion layer altitude extends to several meters, but on moving inland it rises to a few hundred meters.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
347-364
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • Optics Division, Faculty of Physics, A. Mickiewicz University, Umultowska 85, PL-60-614 Poznań, Poland, halas@amu.edu.pl
  • Optics Division, Faculty of Physics, A. Mickiewicz University, Umultowska 85, PL-60-614 Poznań, Poland
  • Institute of Physics, Technical University, Nieszawska 13a, PL-60-965 Poznań, Poland
  • Department of Physics, Technical University of Athens, Athens, Greece
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
Bibliografia
  • [1] Ailisto H., Kostamovaara J., Lammasniemi J., Myllylä R., 1996, Lidar measures up, Photon. Spectra, 30 (3), 96-100.
  • [2] Błaszczak Z., Hałas M., Grabowski J., Papayannis A., 2003a, Lidar study of the dynamics of aerosol type pollution in the lower troposphere over urban area, Proc. SPIE, 5229, 51-53.
  • [3] Błaszczak Z., Hałas M., Grabowski J., Zieliński T., Papayannis A., 2003b, A lidar study of aerosols in the lower troposphere over coastal regions in Poland and Greece, Proc. SPIE, 5229, 54-57.
  • [4] Brinkmann U., 1999, White-light pulsed lidar checks atmosphere, Laser Focus World, 11, 36-38.
  • [5] Dixon G. J., 1998, Laser radars produce three-dimensional pictures, Laser Focus World, 34 (8), 129-136.
  • [6] Drollette D., 2000, Ancient writings come to light, Photon. Spectra, 4, 40 pp.
  • [7] Grabowski J., PapayannisA., 1999a, Environmental sensing and applications, Proc. SPIE, 3821, 12-18.
  • [8] Grabowski J., Papayannis A., 1999b, Komunikaty VI Sy mpozjum Techniki Laserowej. Szczecin-Świnoujście 1999, Wyd. Uczel. Politech. Szczec., Szczecin.
  • [9] Heintzenberg J., Tuch T., Wehner B., Wiedensohler A., Wex H., Ansmann A., Mattis I., Müller D., Wendisch M., Eckhardt S., Stohl A., 2003, Arctic haze over Central Europe, Tellus B, 55 (3), 796-807.
  • [10] Hong C. S., Lee K. H., Kim Y. J., Iwasaka Y., 2004, LlDAR measurements of the vertical aerosol profile and optical depth during the ACE-Asia 2001 IOP, AT Gosan, Jeju Island, Korea, Environ. Monit. Asses., 92 (1)-(3), 43-57.
  • [11] Hoppel W. A., Fitzgerald J. W., Larson G. E., 1985, Aerosol size distributions in airmasses advecting off the East Coast of the United States, J. Geophys. Res., 90, 2365-2379.
  • [12] Klett J., 1985, Lidar inversion with variable backscatter/extinction ratios, Appl. Optics, 24 (11), 1638-1643.
  • [13] Kovalev V. A., 1993, Lidar measurements of the vertical aerosol extinction profiles with range-dependent backscatter to extinction ratios, Appl. Optics, 32 (30), 6053-6065.
  • [14] Kunz G. J., de Leeuw G ., Becker E., O’Dowd C. D., 2002, Lidar observations of atmospheric boundary layer structure and sea spray aerosol plumes generation and transport at Mace Head, Ireland (PARFORCE experiment), J. Geophys. Res., 107 (D19), 8106, doi: 10.1029/2001JD001240.
  • [15] Labow G., Flynn L. F., Rawlins M. A., Beach R. A., Simmons C. A., Schubert C. A., 1996, Estimation of ozone with total ozone portable spectroradiometer instruments. II Practical operation and comparisons, Appl. Optics, 35 (30), 6084-6089.
  • [16] Marenco F., Santacesaria V., Bais A., Balis D., Di Sarra A., Papayannis A., Zerefos C., 1997, Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (PAUR Campaign), Appl. Optics, 36 (27), 6875-6886.
  • [17] Measures R. M., 1984, Laser remote sensing, Wiley & Sons, NewYork, 217 pp.
  • [18] Mims F. M., 1992, How to measure the ozone layer, Sci. Probe 2, 4, 45-51.
  • [19] Mody S. E., 1999, From earth to space, lasers take on pollution, Photon. Spectra, 10, 96-103.
  • [20] Monahan E. C., Mac Niocaill G., 1986, Oceanic whitecaps and their role in air-sea exchange processes, D. Reidel, Dordrecht, 129 pp.
  • [21] Monahan E. C., Spiel D. E., Davidson K. L., 1983, Model of marine aerosol generation via whitecaps and wave distribution, Preprint vol., pp. 147-158, 9th Conf. ‘Aerospace and Aeronautical Meteorology of the AMS’, Omaha.
  • [22] Piskozub J., Petelski T., Król T., Marks R., Chomka M., Zieliński T., 1994, A comparison of several measurement techniques used in BAEX’93 marine aerosol experiment, Vol. I, pp. 36-43, Proc. 19th Conf. Baltic Oceanogr., Sopot.
  • [23] Resso M. J., Harris R. J., 1989, A potpourri of infrared detector applications. Infrared detectors are routinely used in a host of applications, Laser Optron., 1, 77-88.
  • [24] Robinson K., 2001, Mobile Raman targets chemical spills, Photon. Spectra, 2, 24 pp.
  • [25] Salemink H. W. M., Schotanus P., Bergwerff J. B., 1984, Quantitative lidar at 532 nm for vertical extinction profiles and the effect of relative humidity, Appl. Phys., 34, 187-189.
  • [26] Voss K. J., Welton E. J., Quinn P. K., Johnson J., Thompson A. M., Gordon H. R., 2001, Lidar measurements during Aerosols 99, J. Geophys. Res., 106 (D18), 20821-20831.
  • [27] Wilczak J. M., Gossard E. E., Neff W. D., Eberhard W. L., 1996, Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress, Bound.-Lay. Meteorol., 78, 321-78, 349.
  • [28] Wu J., 1992, Bubble flux and marine aerosol spectra under various wind velocities, J. Geophys. Res., 97, 2327-2333.
  • [29] Zieliński T., 1998, Changes in aerosol concentration with altitude in the marine boundary layer in coastal areas of the southern Baltic Sea, Bull. PAS, Earth Sci., 46 (3)-(4), 133-139.
  • [30] Zieliński T., Chomka M., Piskozub J., Petelski T., 1998, Verification of different techniques for the measurement of marine aerosols in coastal areas, J. Aerosol Sci., 29 (Suppl. 1), 853-854.
  • [31] Zieliński A., Piskozub J., Zieliński T., 1994, Lidar method in investigations of marine aerosols, Bull. PAS, Earth Sci., 42 (1), 77-88.
  • [32] Zieliński T., Zieliński A., 1997, Aerosol concentrations and their gradients near urban areas determined by means of the liar method, EurOpto Ser., Lidar Atmos. Monit., 3104, 242-247.
  • [33] Zieliński T., Zieliński A., 2002, Aerosol extinction and optical thickness in the atmosphere over the Baltic Sea determined with lidar, J. Aerosol Sci., 33 (6), 47-61.
  • [34] Zieliński A., Zieliński T., Piskozub J., 1997, Aerosol size distribution function in the coastal area, J. Aerosol Sci., 28 (Suppl. 1), 41-42.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0011-0066
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.