Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2004 | No. 46 (2) | 269-287
Tytuł artykułu

Effect of iron limitation on cells of the diatom Cyclotella meneghiniana Kützing

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The response of the Baltic diatom Cyclotella meneghiniana to iron deficiency was examined. The following growth parameters were measured: cell number, chlorophyll a and protein content. The results demonstrate the ability of this diatom to grow well with minimal iron availability; however, the rate of growth fell markedly at the lowest iron(III) concentration. The results of spectrophotometric chlorophyll a measurements and protein assays using the Lowry and Bradford methods indicated a significant decrease in their quantities. Iron may therefore be an important regulatory factor controlling the growth of diatom C. meneghiniana in an aquatic ecosystem.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
269-287
Opis fizyczny
Bibliogr. 80 poz., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland, lewand@iopan.gda.pl
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
Bibliografia
  • [1] Barbeau K., Rue E. L., Bruland K. W., Butler A., 2001, Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands, Nature, 413, 409-413.
  • [2] Behrenfeld M. J., Kolber Z. S., 1999, Widespread iron limitation of phytoplankton in the South Pacific Ocean, Science, 238, 840-843.
  • [3] Berges J. A., Fisher A. E., Harrison D. F., 1993, A comparison of Lowry, Bradford and Smith protein assays using different standards and protein isolated from the marine diatom Thalassiosira pseudonana, Mar. Biol., 115, 187-193.
  • [4] Boyd P. W., Law C. S., 2001, The Southern Ocean Iron Release Experiment (SOIREE) – introduction and summary, Deep-Sea Res.-Part II, 48 (11)-(12), 2425-2438.
  • [5] Boyd P. W., Muggli D. L., Varela D. E., Goldblatt R. H., Chretien R., Orians K. J., Harrison P. J., 1996, In vitro iron enrichment experiments in the NE Subarctic Pacific, Mar. Ecol. Prog. Ser., 136, 179-193.
  • [6] Boye M., van den Berg C. M. G., 2000, Iron availability and the release of iron-complexing ligands by Emiliania huxleyi, Mar. Chem., 70, 277-287.
  • [7] Bradford M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254.
  • [8] Brand L. E., Sunda W. G., Guillard R. R. L., 1983, Limitation of marine phytoplankton reproductive rates by zinc, manganese and iron, Limnol. Oceanogr., 28, 1182-1198.
  • [9] Bruland K. W., Orians K. J., Cowen J. P., 1994, Reactive trace metals in the stratified central North Pacific, Geochim. Cosmochim. Acta, 58, 3171-3182.
  • [10] Chiappelli F., Vasil A., Haggerty D. F., 1979, The protein concentration of crude cell and tissue extracts as estimated by the method of dye binding: comparison with Lowry method, Anal. Biochem., 94, 160-165.
  • [11] Clayton J. R. Jr., Dortch Q., Thoresen S. S., Ahmed S. I., 1988, Evaluation of methods for the separation and analysis of proteins and free amino acids in phytoplankton samples, J. Plankton Res., 10 (3), 341-358.
  • [12] Coale K. H., Johnson K. S., Fitzwater S. E., Gordon R. M., Tanner S., Chavez F. P., Ferioli L., Sakamoto C., Rogers P., Millero F., Steinberg P., Nightingale P., Copper D., Cochlan W. P., Landry M. R., Constantinou J., Rollwagen G., Trasvina A., Kudela R., 1996, A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean, Nature, 383, 495-501.
  • [13] Cullen J. J., 1995, Status of the iron hypothesis after the open-ocean enrichment experiment, Limnol. Oceanogr., 40 (7), 1336-1343.
  • [14] Davey M., Geider R., 2001, Impact of iron limitation on the photosynthetic apparatus of the diatom Chaetoceros muelleri (Bacillariophyceae), J. Phycol., 37 (6), 987-1000.
  • [15] Davey E. W., Gentile J. H., Erickson S. J., Betzer P., 1970, Removal of trace metals from marine culture media, Limnol. Oceanogr., 15 (3), 486-498.
  • [16] de Baar H. J. W., de Jong J. T. M., Bakker D. C. E., Loscher B. M., Veth C., Bathmann U., Smetacek V., 1995, Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean, Nature, 373, 412-415.
  • [17] Doucette G. J., Erdner D. L., Peleato M. L., Hartman J. J., Anderson D. M., 1996, Quantitative analysis of iron-stress related proteins in Thalassiosira weissflogii: measurement of flavodoxin and ferredoxin using HPLC, Mar. Ecol. Prog. Ser., 130, 269-276.
  • [18] Erdner D. L., Anderson D. M., 1999, Ferredoxin and flavodoxin as biochemical indicators of iron limitation during open-ocean iron enrichment, Limnol. Oceanogr., 44 (7), 1609-1615.
  • [19] Erdner D. L., Price N. M., Doucette G. J., Peleato M. L., Andreson D. M., 1999, Characterization of ferredoxin and flavodoxin as markers of iron limitation in marine phytoplankton, Mar. Ecol. Prog. Ser., 184, 43-53.
  • [20] Escoubas J. M., Lomas M., La Roche J., Falkowski P. G., 1995, Light intensity regulation of cab gene transcription is signaled by the redox state of plastoquinone pool, Proc. Natl. Acad. Sci., 92, 10237-10241.
  • [21] Falkowski P. G., 1997, Evolution of the nitrogen cycle and its evolution on the biological sequestration of CO2 in the ocean, Nature, 387, 272-274.
  • [22] Gledhill M., van den Berg C. M. G., 1995, Measurement of the redox speciation of iron in seawater by catalytic cathodic stripping voltammetry, Mar. Chem., 50, 51-61.
  • [23] Gordon R. M., Martin J. H., Knauer G. A., 1982, Iron in north-east Pacific waters, Nature, 299, 611-612.
  • [24] Greene R. M., Geider R. J., Falkowski P. G., 1991, Effect of iron limitation on photosynthesis in a marine diatom, Limnol. Oceanogr., 36 (8), 1772-1782.
  • [25] Guillard R. R. L., 1975, Culture of phytoplankton for feeding marine invertebrates, [in:] Culture of marine invertebrate animals, W. L. Smith & M. H. Chanley (eds.), Plenum Press, New York, 29-60.
  • [26] Harrison G. I., Morel F. M. M., 1986, Response of the marine diatom Thalassiosira weissflogii to iron stress, Limnol. Oceanogr., 31 (5), 989-997.
  • [27] Hayward J., 1968, Studies on the growth of Phaeodactylum tricornutum III. The effect of iron on growth, J. Mar. Biol. Ass. U.K., 48, 295-302.
  • [28] Jeffrey S. W., Humphrey G. F., 1975, New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pflanzen (BPP), 167, 191-194.
  • [29] Kolber Z. S., Barber R. T., Coale K. H., Fitzwater S. E., Greene R. M., Johnson K. S., Lindley S., Falkowski P. G., 1994, Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean, Nature, 371, 145-149.
  • [30] Kosakowska A., 1999, The influence of iron and selected organic compounds on Baltic Sea phytoplankton, Rozpr. i monogr., Inst. Oceanol. PAN, Sopot, 11, 160 pp., (in Polish with English summary).
  • [31] Kosakowska A., Kupryszewski G., Mucha P., Rekowski P., Lewandowska J., Pazdro K., 1999, Identification of selected siderophores in the Baltic Sea environment by the use of capillary electrophoresis, Oceanologia, 41 (4), 573-587.
  • [32] Kosakowska A., Lewandowska J., Stoń J., Burkiewicz K. , 2004, Qualitative and quantitative composition of pigments in Phaeodactylum tricornutum (Bacillariophyceae) stressed by iron, BioMetals, 17, 45-52.
  • [33] Kudo I., Miyamoto M., Noiri Y., Maita Y., 2000, Combined effects of temperature and iron on the growth and physiology of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae), J. Phycol., 36 (6), 1096-1102.
  • [34] Landing W. M., Bruland K. W., 1987, The contrasting biogeochemistry of iron and manganese in the Pacific Ocean, Geochim. Cosmochim. Acta, 51, 29-43.
  • [35] La Roche J., Boyd P. W., McKay R. M. L., Geider R. J., 1996, Flavodoxin as an in situ marker for iron stress in phytoplankton, Nature, 382, 802-805.
  • [36] La Roche J., Murray H., Orellana M., Newton J., 1995, Flavodoxin expression as an indicator of iron limitation in marine diatoms, J. Phycol., 31, 520-530.
  • [37] Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275.
  • [38] Lyman J., Fleming R. H., 1940, Composition of seawater, J. Mar. Res., 3, 134-146.
  • [39] Mann E. L., Chisholm S. W., 2000, Iron limits the cell division rate of Prochlorococcus in the eastern equatorial Pacific, Limnol. Oceanogr., 45 (5), 1067-1076.
  • [40] Martin J. H., Fitzwater S. E., 1988, Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic, Nature, 331, 341-343.
  • [41] Martin J. H., Gordon R. M., Fitzwater S. E., 1991, The case for iron, Limnol. Oceanogr., 36 (8), 1793-1802.
  • [42] Martin J. H., Gordon R. M., Fitzwater S. E., Broenkow W. W., 1989, VERTEX: phytoplankton/iron studies in the Gulf of Alaska, Deep-Sea Res., 36, 649-680.
  • [43] Mayer L. M., Schick L. L., Setchell F. W., 1986, Measurement of protein in nearshore marine sediments, Mar. Ecol. Prog. Ser., 30, 159-165.
  • [44] McKay R. M. L., Geider R. J., La Roche J., 1997, Physiological and biochemical response of the photosynthetic apparatus of two marine diatoms to Fe stress, Plant Physiol., 114, 615-622.
  • [45] Michaels A. F., Olson D., Sarmiento J. L., Ammerman J. W., Fanning K., Jahnke R., Knap A. H., Lipschultz F ., Prospero J. M., 1996, Input, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean, Biogeochemistry, 35, 181-226.
  • [46] Millero F. J., Yao W., Aicher J., 1995, The speciation of Fe(II) and Fe(III) in natural waters, Mar. Chem., 50, 21-39.
  • [47] Milligan A. J., Harrison P. J., 2000, Effects of non-steady state iron limitation on nitrogen assimilatory enzymes in the marine diatom Thalassiosira weissflogii (Bacillariophyceae), J. Phycol., 36, 78-86.
  • [48] Mortain-Bertrand A., Bennett J., Falkowski P. J., 1990, Photoregulation of the light-harvesting chlorophyll protein complex associated with photosystem II in Dunaliella tertiolecta, Plant Physiol., 94, 304-311.
  • [49] Murphy L. S., Guillard R. R. L., Brown J. F., 1984, The effects of iron and manganese on copper sensitivity in diatoms: differences in the responses of closely related neritic and oceanic species, Biol. Oceanogr., 3, 187-201.
  • [50] Neilands J. B., 1974, Iron and its role in microbial physiology, [in:] Microbial iron metabolism: a comprehensive treatise, J. B. Neilands (ed.), Acad. Press, New York, 3-34.
  • [51] Öztürk M., Steinnes E., Sakshaug E., 2002, Iron speciation in the Trondheim Fjord from the perspective of iron limitation for phytoplankton, Estuar. Coast. Shelf Sci., 55, 197-212.
  • [52] Paczuska L., Kosakowska A., 2003, Is iron a limiting factor of Nodularia spumigena blooms?, Oceanologia, 45 (4), 679-692.
  • [53] Paerl H. W., 1997, Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as ‘new’ nitrogen and other nutrie nt sources, Limnol. Oceanogr., 42 (5), 1154-1165.
  • [54] Pankow H., Kell V., Wasmund N., Zander B., 1990, Ostsee-Algenflora, G. Fischer Verl., Jena, p. 85.
  • [55] Pempkowiak J., Chiffoleau J.-P., Staniszewski A., 2000, The vertical and horizontal distribution of selected trace metals in the Baltic Sea off Poland, Estuar. Coast. Shelf Sci., 51 (1), 115-125.
  • [56] Peterson G. L., 1977, A simplification of the protein assay method of Lowry et al. which is more generally applicable, Anal. Biochem., 83 (2), 346-356.
  • [57] Peterson G. L., 1983, Determination of total protein, [in:] Methods in enzymology, S. P. Colowick & N. O. Kaplan (eds.), Acad. Press, New York, 95-119.
  • [58] Raven J. A., 1988, The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources, New Phytol., 109, 279-287.
  • [59] Raven J. A., 1990, Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway, New Phytol., 116, 1-18.
  • [60] Reid R. T., Live D. H., Faulkner D. J., Butler A., 1993, A siderophore from a Marine bacterium with an exceptional ferric iron affinity constant, Nature, 366, 455-458.
  • [61] Rue E. L., Bruland K. W., 1995, Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method, Mar. Chem., 50, 117-138.
  • [62] Schlösser U. G., 1994, SAG – Algae culture collection at the University of Göttingen. Catalogue of strains 1994, Bot. Acta, 107, p. 139.
  • [63] Soria-Dengg S., Reissbrodt R., Horstmann U., 2001, Siderophores in marine coastal waters and their relevance for iron uptake by phytoplankton: experiments with the diatom Phaeodactylum tricornutum, Mar. Ecol. Prog. Ser., 220, 73-82.
  • [64] Spiller S. C., Castelfranco A. M., Castelfranco P. A., 1982, Effects of iron and oxygen on chlorophyll biosynthesis. I. In vivo observations on iron and oxygen deficient plants, Plant Physiol., 69, 107-111.
  • [65] Stal J. L., Staal M., Villbrandt M., 1999, Nutrient control of cyanobacterial blooms in the Baltic Sea, Aquat. Microb. Ecol., 18, 165-173.
  • [66] Strickland J. D. H., Parsons T. R., 1968, A practical handbook of sea water analysis. Pigment analysis, Fish. Res. Bd. Can. Bull., 167, 1-312.
  • [67] Sunda W. G., 2001, Bioavailability and bioaccumulation of iron in the Sea, [in:] The biogeochemistry of iron in seawater, D. R. Turner & K. A Hunter (eds.), IUPAC Ser., Wiley, New York, 41-84.
  • [68] Sunda W. G., Huntsman S. A., 1995, Iron uptake and growth limitation in oceanic and coastal phytoplankton, Mar. Chem., 50, 189-206.
  • [69] Takeda S., Obata H., 1995, Response of equatorial Pacific phytoplankton to subnanomolar Fe enrichment, Mar. Chem., 50, 219-227.
  • [70] Timmermans K. R., Gerringa L. J. A., de Baar H. J. W., van der Wagt B., Veldhuis M. J. W., de Jong J. T. M., Croot P. L., 2001, Growth rates of large and small Southern Ocean diatoms in relation to availability of iron in natural seawater, Limnol. Oceanogr., 46 (2), 260-266.
  • [71] Timmermans K. R., Stolte W., de Baar H. J. W., 1994, Iron-mediated effects on nitrate reductase in marine phytoplankton, Mar. Biol., 121, 389-396.
  • [72] Timmermans K. R., van Leeuwe M. A., de Jong J. T. M., McKay R. M. L., Nolting R. F., Witte H. J., van Ooyen J., Swagerman M. J. W., Kloosterhuis H., de Baar H. J. W., 1998, Iron limitation in the Pacific region of the Southern Ocean: evidence from enrichment bioassays, Mar. Ecol. Prog. Ser., 166, 27-41.
  • [73] Trick C. G., Andersen R. J., Price N. M., Gillam A., Harrison P. J., 1983, Examination of hydroxamate-siderophore production by neritic eukaryotic marine phytoplankton, Mar. Biol., 75, 9-17.
  • [74] Trick C. G., Wilhelm S. W., 1995, Physiological changes in the coastal marine cyanobacterium Synechococcus sp. PCC 7002 exposed to low ferric ion levels, Mar. Chem., 50, 207-217.
  • [75] Tsuda A., Takeda S., Saito H., Nishioka J., Nojiri Y., Kudo I., Kiyosawa H., Shiomoto A., Imai K., Ono T., Shimamoto A., Tsumune D., Yoshimura T., Sainto T., et al., 2003, A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom, Science, 300, 958-961.
  • [76] van Leeuwe M. A., Stefels J., 1998, Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophycea). II. Pigment composition, J. Phycol., 34, 496-503.
  • [77] Wells M. L., Price N. M., Bruland K. W., 1994, Iron limitation and the cyanobacterium Synechococcus in equatorial Pacific waters, Limnol. Oceanogr., 39, 1481-1486.
  • [78] Wells M. L., Price N. M., Bruland K. W., 1995, Iron chemistry in seawater and its relationship to phytoplankton: a workshop report, Mar. Chem., 48, 157-182.
  • [79] Wilhelm S. W., Trick C. G., 1994, Iron-limited growth of cyanobacteria: Multiple siderophore production is a common response, Limnol. Oceanogr., 39 (8), 1979-1984.
  • [80] Yu M. H., Miller G. W., 1982, Formation of δ-aminolevulinic acid in etiolated and iron-stressed barley, J. Plant Nutr., 5, 1259-1271.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0011-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.