Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 36, No.1 | 83-101
Tytuł artykułu

Sulfur Cycling and the Sulfurization of Humic and Fulvic Acids in the Sediments of the rivers Rupel (Belgium) and Authie (northern France)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sulfur cycling and the sulfurization of humic and fulvic acids were compared in recent sediments from two western European rivers (the heavily polluted River Rupel in Belgium and the pristine River Authie in northern France). The sulfurization of humic and fulvic substrates occurs in both sediments irrespective of organic loading, but the sulfur species added to the organic substrate differ. Some sulphurization of fulvic acid by oxidized S was observed in the strongly reducing sediment of the River Rupel. Humic acids were sulfurized in the sediments of both rivers in these segments with prevailing reducing conditions by reduced S.
Słowa kluczowe
Wydawca

Rocznik
Strony
83-101
Opis fizyczny
bibliogr. 43 poz., wykr.
Twórcy
autor
autor
autor
  • Department of Environmental Sciences, Jožef Stefan Institute Jamova 39, 1000 Ljubljana, Slovenia Tel. ++386 1 5885 393, Fax: ++386 1 5885 346, sonja.lojen@ijs.si
Bibliografia
  • Amrani A., Aizenshtat Z., 2004, Mechanisms of sulphur introduction chemically controlled: δ34S imprint, Org. Geochem., 35: 1319-1336
  • Anderson, T.F., Pratt, L.M., 1995, Isotopic evidence for the origin of organic sulfur and elemental sulfur in marine sediments [in:] M.A. Vairavamurty, M.A.A. Schoon (Eds.), Geochemical Transformations of Sedimentary Sulfur, Amer. Chem. Soc., pp. 378-396
  • Batley G.E., 1990, Trace Element Speciation: Analytical Methods and Problems. CRC Press, Boca Raton, Florida, pp. 360
  • Berner R.A., 1970, Sedimentary pyrite formation, Amer. J. Sci., 268: 1-23
  • Billon G., Ouddane B., Boughriet A., 2001, Chemical speciation of sulphur compounds in surface sediments from three bays (Fresnaye, Seine and Authie) in northern France, and identification of some factors controlling their generation, Talanta, 53: 971-981
  • Billon G., Ouddane B., Boughriet A., 2001a, Artefacts in the speciation of sulphides in anoxic sediments, Analyst, 126: 1805-1809
  • Billon G., Genbembre L., Boughriet A., 2002, On the chemical properties of sedimentary sulphur in estuarine environments, Phys. Chem. Chem. Phys., 4: 751-756
  • Böttcher M.E., Thamdrup B., Vennemann T.W., 2001, Oxygen and sulphur isotope fractionation during anaerobic bacterial disproportionation of elemental sulphur, Geochim. Cosmochim. Acta, 65: 1601-1609
  • Brüchert V., Pratt L.M., 1996, Contemporaneous early diagenetic formation of organic and inorganic sulphur in estuarine sediments from St. Andrew Bay, Florida, USA, Geochim. Cosmochim. Acta, 60: 2325-2332
  • Brüchert V., 1996, Early diagenesis of sulphur in estuarine sediments: The role of sedimentary humic and fulvic acids, Geochim. Cosmochim. Acta, 62: 1567-1586
  • Butler I.B., Böttcher M.E., Rickard D., Oldroyd A., 2004, Sulphur isotope partitioning during pyrite formation: implications for the interpretation of sedimentary and hydrothermal pyritesulphur isotope compositions, Earth Planet. Sci. Lett., 228: 495-509
  • Canfield D.E., Raiswell R., Westrich J.T., Reaves C.M., Berner R.A., 1986, The use of chromium reduction in the analysis of reduced inorganic sulphur in sediments and shales, Chem. Geol., 54: 149-155
  • Canfield D.E: 1989, Reactive iron in marine sediments, Geochim. Cosmochim. Acta., 53: 619-632
  • Canfield D.E., Thamdrup B., 1996, Fate of elemental sulphur in an intertidal sediment, FEMS Microbiol. Ecol., 19: 95-103
  • Canfield D.E., Boudreau B.P., Mucci A., Gundersen J.K., 1998, The early diagenetic formation of organic sulphur in the sediments of Mangrove Lake, Bermuda, Geochim Cosmochim Acta, 62: 767-781
  • Ceseri L.S., Greenberg A.E., Eaton A.D., 1998, Standard methods for the examination of water and wastewater. 4500-SO4 2-: Ion-Selective Electrode Method, 20th edition, APHA, AWWA & WEF, US
  • Cypionka H., Smock A.M., Böttcher M.E., 1998, A combined pathway of sulphur compound disproportionation in Desulfovibrio desulphuricans, FEMS Microbiol. Lett., 166: 181-186
  • Deines P., 1980, The isotopic composition of reduced organic carbon [in:] Handbook of Environmental Isotope Geochemistry Vol. 1, The Terrestrial Environment, Fritz P., Fontes J.Ch. (eds.), A. Elsevier, Amsterdam - Oxford - New York, pp. 329-406
  • Francois R., 1987, A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis, Geochim. Cosmochim. Acta, 51: 17-27
  • Fry B., Scalan R.S., Parker P.L., 1977, Stable carbon isotope evidence for two sources of organic matter in coastal sediments: seagrass and plankton, Geochim. Cosmochim. Acta, 41: 1875-1877
  • Fry B., Gest H., Hayes J.M., 1985, Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium Chromatium vinosum, FEMS Microbiol. Lett., 27: 227-232
  • Gerritse R.G., 1999, Sulphur, organic carbon and iron relationships in estuarine and freshwater sediments: effect of sedimentation rate, Appl. Geochem., 14: 41-52
  • Habicht K.S., Canfield D.E., 1997, Sulphur isotope fractionation during bacterial sulfate reduction in organic-rich sediments, Geochim. Cosmochim. Acta, 51: 5351-5361
  • Hansen W., Kampa E., Laskov C., Kraemer R.A., 2002, Synthesis report on the identification and designation of heavily modified water bodies, Report of CIS Working Group 2.2. on heavily modified water bodies, Ecologic Institute for International and European Environmental Policy, Berlin, pp. 213
  • Henneke E., Luther III G.W., de Lange G.J., Hoefs J., 1997, Sulphur speciation in anoxic hypersaline sediments from the eastern Mediterranean Sea, Geochim. Cosmochim. Acta, 61: 307-21
  • Jørgensen B.B., 1977, The sulphur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnol. Oceanogr., 22: 814-831
  • Jørgensen B.B., 1982, Mineralization of organic matter in the sea bed - role of sulfate reduction. Nature, 296: 643-645
  • Le-Calvez, N., 2002, Mise auPoint d'une Méthodologie Analytique Appliqué au Devenir des Contaminants Organiques dans l'Environment Aquatique. PhD Thesis, University of Sciences and Technology of Lille 1, pp. 233
  • Leermakers M., Gao Y., Gabelle C., Lojen S., Ouddane B., Wartel M., Baeyens W., 2005, Determination of high resolution pore water profiles of trace metals in sediments of the Rupel River (Belgium) using DET (diffusive equilibrium in thin films) and DGT (diffusive gradients in thin films) techniques, Water Air Soil Pollut., 166: 265-286
  • Leventhal J., Taylor C., 1990, Comparison of methods to determine degree of pyritization, Geochim. Cosmochim. Acta, 54: 2621-2625
  • Lojen S., Ogrinc N., Dolenec T., Vokal B., Szaran J., Mihelčić G., Branica M., 2004, Nutrient fluxes and sulphur cycling in the organic-rich sediments of Makirina Bay (Central Dalmatia, Croatia), Sci. Tot. Environ., 327: 265-284
  • Meysman F.J.R., Middelburg J.J., 2005, Acid volatile sulphide (AVS) - a comment, Mar. Chem., 97: 206-212
  • Middelburg J.J., 1991, Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia, Geochim. Cosmochim. Acta, 55: 815-828
  • Neumann T., Rausch N., Leipe T., Dellwig O., Berner Z., Böttcher M.E., 2005, Intense pyrite formation under low-sulphate conditions in the Achterwasser lagoon, SW Baltic Sea, Geochim Cosmochim Acta, 69: 3619-3630
  • Peterson B.J., Howarth R.W., 1987. Sulphur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia, Limnol. Oceanogr., 32: 1195-1213
  • Rickard D., Morse J.W., 2005, Acid volatile sulphide (AVS), Mar. Chem., 97: 141-197
  • Rogers K.M., 2003. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand, Mar. Poll Bull., 46: 821-827
  • Roychoudhry A.N., Kostka J.E., Van Cappelen P., 2003, Pyritization: a palaeoenvironmental and redox proxy reevaluated, Estuar. Coast. Shelf. Sci., 57: 1183-1193
  • Sayles F.L., Curry W.B., 1988, δ13C, TCO2, and the metabolism of organic carbon in deep sea sediments, Geochim. Cosmochim. Acta, 52: 2963-2978
  • Sweeney R.E., Kalil E.K., Kaplan I.R., 1980. Characterization of domestic and industrial sewage in southern California coastal sediments using nitrogen, carbon, sulphur and uranium tracers, Mar. Environ. Res., 3: 225-243
  • Thamdrup B., Finster K., Hansen J.W., Bak F., 1993, Bacterial disproportionation of elemental sulphur coupled to chemical reduction of iron and manganese, Appl. Environ. Microbiol., 59: 101-108
  • Urban N.R., Ernst K., Bernasconi S., 1999, Addition of sulphur to organic matter during early diagenesis of lake sediments, Geochim. Cosmochim. Acta, 63: 837-853
  • Van Dover C.L., Grassle J.F., Fry B., Garritt R.H., Starczak V.R., 1992. Stable isotope evidence for entry of sewage-derived organic material into a deep-sea food web, Nature, 360: 153-156
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0008-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.