Czasopismo
2007
|
Vol. 47, [Z] 1
|
57-75
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
For a map p of N into itself, consider the induced transformation [...] of series in a topological vector space. Then such properties of this transformation as sending convergent series to convergent series, or convergent series to bounded series, or bounded series to bounded series (and a few more) are mutually equivalent. Moreover, they are equivalent to an intrinsic property of p which reduces to those found by Agnew and Pleasants (in the case of permutations) and Witula (in the general case) as necessary and sufficient conditions for the above transformation to preserve convergence of scalar series. In the paper, the scalar case is treated first using simple Banach space methods, and then the result is easily extended to the general setting.
Rocznik
Tom
Strony
57-75
Opis fizyczny
bibliogr. 10 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Sciences, A.Mickiewicz University Umultowska 87, 61-614 Poznań, Poland, drewlech@amu.edu.pl
Bibliografia
- [1] R. P. Agnew, Permutations preserving convergence of series, Proc. Amer. Math. Soc. 6 (1955), 563-564.
- [2] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York 1958.
- [3] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart 1981.
- [4] P. Kostyrko, On convergence preserving transformations of infinite series, Math. Slovaca 46 (1996), 239-243.
- [5] P. A. B. Pleasants, Rearrangements that preserve convergence, J. London Math. Soc. (2) 15 (1977), 134-142, and Addendum, ibid. 18 (1978), 576.
- [6] M. Ali Sarigol, A short proof of Levi's theorem on rearrangements of convergent series, Doga-Mat. 16 (1992), 201-205.
- [7] M. Ali Sarigol, Rearrangements of bounded variation sequences, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), 373-376.
- [8] P. Schaefer, Sum-preserving rearrangement of convergent series, Amer. Math. Monthly 88 (1981), 33-40.
- [9] A. Wilansky, Summability through Functional Analysis, Notas de Matematica no. 85, North-Holland, Amsterdam, New York and Oxford 1984.
- [10] R. Witula, Convergence-preserving functions, Nieuw.-Arch.-Wisk. (4) 13 (1995), 31-35.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0004-0060