Czasopismo
2004
|
Vol. 44, nr spec.
|
105-121
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The main goal of the paper is to prove that the Hecke modular functions are in some sense rare objects. A geometric approach is applied. Two topologies in the space of complex sequences with polynomial growth are denned, and in both cases we prove that the set of Fourier coefficients of Hecke modular functions form a discrete subset. A quantitative version of this statement is also provided. The proof of the main result depends on non-linear twists of degree two L-functions.
Słowa kluczowe
Rocznik
Strony
105-121
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
autor
- Adam Mickiewicz University, Faculty of Mathematics and Computer Science, ul. Umultowska 87, 61-614 Poznań, Poland
Bibliografia
- [1] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I. McGraw-Hill, 1953.
- [2] E. Hecke, Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, Göttingen, 1983.
- [3] J. Kaczorowski and A. Perelli, The Selberg class; a survey, Number Theory in Progress, Proc. Conf, in Honor of A. Schinzel, ed. by K. Györy et al., 953-992, de Gruyter, 1999.
- [4] J. Kaczorowski and A. Perelli, On the structure of the Selberg class, VI; non-linear twists, to appear in Acta Arithmetica, (2004).
- [5] E. C. Titchmarsh, The Theory of Functions, 2nd edition, Oxford, 1939.
Uwagi
Dedicated to Prof. Julian Musielak on his 75th birthday.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0007-0052