Czasopismo
2002
|
Vol. 50, nr 1
|
57-76
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Bayesian Networks (BN) are convenient tool for representation of probability distribution of variables. We study time complexity of decision trees which compute values of all observable variables from BN. We consider (1,2)-BN in which each node has at most 1 entering edge, and each variable has at most 2 values. For an arbitrary (1,2)-BN we obtain lower and upper bounds on minimal depth of decision tree that differ not more than by a factor of 4, and can be computed by an algorithm which has polynomial time complexity. The number of nodes in considered decision trees can grow as exponential on number of observable variables in BN. We develop an polynomial algorithm for simulation of the work of decision trees which depth lies between the obtained bounds.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
57-76
Opis fizyczny
bibliogr. 3 poz.
Twórcy
autor
- Faculty of Computing Mathematics and Cybernetics of Nizhni Novgorod State University, 23, Gagarina Av., Nizhni Novgorod, 603600, Russia, moshkov@unn.ac.ru
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0004-0004