Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Rocznik
Tom
Strony
179-188
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
autor
- Warszawa
Bibliografia
- [1] W. R. Alford, A. Granville, C. Pomerance 1994, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139, 703-722.
- [2] E. Artin 1927, Beweis des allgemeinen Reziprozitätsgesetzes, Abh. Math. Sem. Univ. Hamburg 5, 353-363.
- [3] A. Baker 1967, Linear forms in logarithms of algebraic numbers II, Mathematika 14, 102-107.
- [4] R. Baker 1967/68, Contributions to the theory of Diophantine equations I. On the representation of integers by binary forms, Philos Trans. Roy. Soc. London Ser. A 263, 173-191.
- [5] A. Baker, J. Coates 1970, Integer points on curves of genus 1, Proc. Cambridge Philos. Soc. 67, 595-602.
- [6] A. Baker, G. Harman, J. Pintz 2001, The difference between consecutive primes, II, Proc. London Math. Soc. (3) 83, 532-567.
- [7] K. Ball, T. Rivoal 2001, Irrationalité d’une infinité de valeurs de la fonction zéta aux entiers impairs, Invent. Math. 146, 193-207.
- [8] E. Bombieri 1965, On the large sieve, Mathematika 12, 201-225.
- [9] B. M. Bredihin 1963, Binarnyje additivnyje problemy nieopriedielennogo tipa II, Analog problemy Hardi-Littłwuda, Izw. Akad. Nauk SSSR Ser. Mat. 27, 577-612.
- [10] D. Burgess 1957, The distribution of quadratic residues and non-residues, Mathematika 4, 106-112.
- [11] J. R. Chen 1973, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16, 157-176.
- [12] В. Соnreу 1989, More than two fifth of the zeros of the Riemann zeta function are the critical line, J. Reine Angew. Math. 399, 1-26.
- [13] N. G. Czebotariow (Tschebotaröw) 1926, Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann. 95, 191-228.
- [14] P. Deligne 1974, La conjecture de Weil I, Publ. Math. IHES 43, 273-307.
- [15] N. D. Elkies 1988, On А4 + В4 + С4 = D4, Math. Comp. 51, 824-835.
- [16] P. Erdős 1949, On a new method in elementary number theory which leads to an elementary proof of the prime number theorem, Proc. Nat. Acad. Sci. U.S.A. 35, 374-384.
- [17] P. Erdős, M. Kac 1940, The gaussian law of errors in the theory of additive numer theoretic functions, Amer. J. Math. 62, 738-742.
- [18] G. Fallings 1983, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73, 349-366; erratum, ibid. 75, 381.
- [19] J. Friedlander, H. Iwaniec 1998, The polynomial X2 + Y4 captures its primes, Ann. of Math. (2) 148, 965-1040.
- [20] R. Fueter 1924-27, Vorlesungen über die singulären Moduln und die komplexe Multiplikation der Elliptischen Funktionen, Berlin.
- [21] A. O. Gelfоnd 1934, Sur le septième problème de Hilbert, Izv. Akad. Nauk SSSR Ser. Mat. 7, 623-634.
- [22] E. S. Gołod, I. R. Szafarewicz 1964, O basznie polej klassow, ibid. 28, 261-272.
- [23] W. T. Gowers 2001, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11, 465-588.
- [24] S. Graham, C. J. Ringrose 1990, Lower bounds for least quadratic non-residues, w: Analytic Number Theory, Birkhäuser, 269-309.
- [25] B. Gross, D. Zagier 1986, Heegner points and derivatives of L-series, Invent. Math. 84, 225-320.
- [26] G. H. Hardy, S. Ramanujan 1918, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. (2) 17, 75-115.
- [27] D. R. Heath-Brown 1992, Zero-free regions for Dirichlet L-functions and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64, 265-338.
- [28] D. R. Heath-Brown 2001, Primes represented by x3 + 2y3, Acta Math. 186, 1-84.
- [29] D. R. Heath-Brown, S. J. Patterson 1979, The distribution of Kummer sums at prime arguments, J. Reine Angew. Math. 310, 111-130.
- [30] E. Hlawka 1943, Zur Geometrie der Zahlen, Math. Z. 49, 285-312.
- [31] G. Hоheisel 1930, Primzahlprobleme in der Analysis, S. B. Preuß. AW Phys.-Math. Kl., 580-588.
- [32] N. M. Korobow 1958, Ocenki summ Wejla i raspriedielenije prostych czisieł, Dokł. Akad. Nauk SSSR 123, 28-31 (8).
- [33] J. W. Linnik 1944, On the least prime in an arithmetic progression, I. The basic theorem, Mat. Sb. (2) 15, 139-178; II. The Deuring-Heilbronn phenomenon, ibid. 347-368.
- [34] J. E. Littlewood 1914, Sur la distribution des nombres premiers, C. R. Acad. Sci. Paris 158, 1869-1872.
- [35] E. Maillet 1919, Détermination des points entiers des courbes algébriques unicursales à coeficients entiers, ibid. 168, 217-220.
- [36] H. B. Mann 1942, A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. of Math. (2) 43, 523-527.
- [37] G. A. Margulis 1987, Forms quadratiques indéfinies et flots unipotents sur les espaces homogènes, C. R. Acad. Sci. Paris Sér. I 304, 249-253.
- [38] J. W. Matijasiewicz 1970, Diofantowost’ pierieczislimych mnożestw, Dokł. Akad. Nauk SSSR 191, 278-282.
- [39] L. J. Mordell 1922, On the rational solutions of the indeterminate equations of third and fourth degrees, Proc. Cambridge Philos. Soc. 21, 179-192.
- [40] Narkiewicz 1977, Teoria liczb, PWN.
- [41] Narkiewicz 1986, Classical Problems in Number Theory, PWN.
- [42] J. W. Nesterenko 1996, Modularnyje funkcii i woprosy transcendientnosti, Mat. Sb. 187, 65-96.
- [43] A. M. Odlyzko, H. J. J. te Riele 1985, Disproof of the Mertens conjecture, J. Reine Angew. Math. 357, 138-160.
- [44] H. Poincaré 1901, Sur les propriétés arithmétiques des courbes algébriques, J. Math. Pures Appl. 149, 97-116.
- [45] R. A. Rankin 1938, The difference between consecutive prime numbers, J. London Math. Soc. 13, 242-247.
- [46] K. F. Roth 1955, Rational approximation to algebraic numbers, Mathematika 2, 1-20; corrigendum, 168.
- [47] A. Schinzel 1971, Równania diofantyczne, Wiadom. Mat. 12, 227-232.
- [48] A. Schinzel 1979, Postęp w teorii liczb w latach 1966-1978, ibid. 22, 1-11.
- [49] A. Schinzel 1997, Sto lat twierdzenia o liczbach pierwszych, ibid. 33, 91-98.
- [50] W. M. Schmidt 1970, Simultaneous approximation to algebraic numbers by rationals, Acta Math. 125, 189-201.
- [51] W. M. Schmidt 1980, Diophantine inequalities for forms of odd degree, Adv. Math. 38, 128-151.
- [52] W. M. Schmidt 1999, The zero multiplicity of linear recurrence sequences, Acta Math. 182, 243-282.
- [53] T. Schneider 1934, Transzendenzuntersuchungen periodischer Funktionen I. Transzendenz von Potenzen, J. Reine Angew. Math. 172, 65-69.
- [54] B. Segre 1943, On ternary non-homogeneous cubic equations with more than one rational solution, J. London Math. Soc. 18, 88-100.
- [55] A. Selberg 1942, On the zeros of Riemann’s zeta-function on the critical line, Arch. Math. Naturvid. 48, 101-114.
- [56] A. Selberg 1949, An elementary proof of the prime number theorem, Ann. of Math. (2) 50, 305-313.
- [57] C. L. Siegel 1929, Über einige Anwendungen Diophantischer Approximationen, Abh. Preuß. AW Phys. Math. Kl., No. 1.
- [58] C. L. Siegel 1935, Über die Classenzahl quadratischer Zahkörper, Acta Arith. 1, 83-86.
- [59] E. Szemerédi 1975, On sets of integers containing no k elements in arithmetic progression, ibid. 27, 199-245.
- [60] L. Sznirelman 1930, Über additive Eigenschaften von Zahlen, Ann. Inst. Polytechn. Novočerkask. = Math. Ann. 107 (1933), 649-690.
- [61] T. Takagi 1920, Über eine Theorie des relativ-Abelschen Zahlkörpers, J. Coll. Sci. Tokyo 41.
- [62] T. Takagi 1922, Über das Reziprozitätsgesetz in einen beliebigen algebraischen Zahlkörper, ibid. 44.
- [63] A. Thue 1909, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135, 284-305.
- [64] R. Tijdeman 1976, On the equation of Catalan, Acta Arith. 29, 197-209.
- [65] B. L. van der Waerden 1927, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskunde 15, 212-216.
- [66] A. Weil 1948, Sur les courbes algébriques et les variétés qui s’en déduisent, Herrman et Cie, Paris.
- [67] H. Weyl 1916, Über die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77, 313-352.
- [68] A. Wiles 1995, Modular elliptic curves and Fermat’s Last Theorem, Ann. of Math. (2) 141, 443-551.
- [69] I. M. Winogradow 1958, Nowaja ocenka funkcii ζ(1 + it), Izv. Akad. Nauk SSSR Ser. Mat. 22, 161-164.
- [70] G. F. Woronoj (Voronoï) 1908, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math. 133, 97-178.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0003-0019