Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | [Z] 42(2) | 221-236
Tytuł artykułu

Oscillation of parabolic delay differential equations with positive and negative coefficients

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Some new sufficient conditions for oscillation of the parabolic delay differential equations with positive and negative coefficients are obtained. Our results extend and improve the well known results in the literature.
Wydawca

Rocznik
Tom
Strony
221-236
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland, kuba@amu.edu.pl
autor
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland, shsaker@mum.mans.eun.eg
  • Mathematics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
Bibliografia
  • [1] V. Bykov and T. Ch. Kultaev, Oscillation of solutions of a class of parabolic equations, Izv. Akad. Nauk, Kirgiz, SSR. 6 (1983), 3-9.
  • [2] E. M. Elabbasy, A. S. Hegazi and S. H. Saker, Oscillation of solutions to delay differential equations with positive and negative coefficients, Electronic Journal of Differential Equations 13 (2000), 1-13.
  • [3] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations With Applications, Clarendon Press, Oxford, (1991).
  • [4] V. Kreith and G. Ladas, Allowable delays for positive diffusion processes, Hiroshima Math. J. 15 (1985), 437-443.
  • [5] T. Kusano and N. Yoshida, Oscillation of parabolic equations with oscillating coefficients, Hiroshima Math. J. 24 (1994), 123-133.
  • [6] N. Yoshida, Oscillation of nonlinear parabolic equations with functional arguments, Hiroshima Math. J. 16 (1986), 305-314.
  • [7] N. Yoshida, Forced oscillation certain nonlinear delay parabolic equations, Bull. Austral. Math. Soc. 36 (1987), 289-294.
  • [8] S. L. Xie and S. S. Chen, Oscillation of a logistic equation with delay and diffusion, Anal. Polon. Math. 62 (1995), 219-230.
  • [9] V. S. Vladimirov, Equations of Mathematical Physics, Nauka, Moscow, (1981).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0002-0058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.