Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | [Z] 42(1) | 63-74
Tytuł artykułu

Oscilltion of solutions to impulsive delay differential equations

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we shall consider the impulsive delay differential equations with variable coefficients. Some new sufficient conditions for oscillation of all solutions are obtained. Our results extend and improve some well known results in the literature.
Wydawca

Rocznik
Tom
Strony
63-74
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Department of Mathematics, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China, wtli@lzu.edu.cn
autor
  • Mathematics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt, shsaker@mans.edu.eg
  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
Bibliografia
  • [1] D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect, Stability, Theory and Applications, Ellis Horwood Ltd. (1989).
  • [2] D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific & Technical, Harlow (1993).
  • [3] D. D. Bainov and Yu. I. Domshlak, On the oscillation properties of first-order impulsive differential equations with deviating arguments, Israel Jour. Math. 98 (1997), 167-187.
  • [4] L. Berezansky and E. Braverman, Oscillation of a linear delay impulsive differential equations, Comm. Appl. Nonlinear Anal. 3 (1996), 61-77.
  • [5] M. P. Chen, J. S. Yu and J. H. Shen, The persistence of nonoscillatory solutions of delay differential equations under impulsive perturbations, Computers Math. Appl. 27 (1994), 1-6.
  • [6] A. Domoshnitsky and M. Drakhlin, Nonoscillation of first order impulsive differential equations with delay, J. Math. Anal. Appl. 106 (1997), 254-269.
  • [7] K. Gopalsamy and B. G. Zhang, On delay differential equations with impulses, J. Math. Anal. Appl. 139 (1989), 110-122.
  • [8] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, (1991).
  • [9] E. Kruger-Thiemer, Formal theory of drug dosage regimens, I. J. Theort. Biol. 13 (1996), 212-235.
  • [10] G. S. Ladde, V. Lakshmikantham and B. Z. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, (1987).
  • [11] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, (1989).
  • [12] J. H. Shen, The nonoscillatory solutions of delay differential equations with impulses, Appl. Math. Comp. 77 (1996), 153-165.
  • [13] J. Yan and A. Zhao, Oscillation and stability of linear impulsive delay differential equations, J. Math. Anal. Appl. 227 (1998), 187-194.
  • [14] Y. Zhang, A. Zhao and J. Yan, Oscillation criteria for impulsive delay differential equations, J. Math. Anal. Appl. 205 (1997), 461-470.
  • [15] A. Zhao and J. Yan, Necessary and sufficient conditions for oscillation of delay differential equations with impulses, Appl. Math. Lett. 10 (1997), 23-29.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS2-0002-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.