Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | [Z] 56, 7-8 | 661-678
Tytuł artykułu

Allilocynowe pochodne cukrów prostych w syntezie układów karbocyklicznych

Warianty tytułu
EN
Application of sugar allyltins in the synthesis of carbobicyclic derivatives
Języki publikacji
PL
Abstrakty
EN
Sugar allylic alcohols of the general formula Sug-CH=CH-CH2OH are easily converted into the allyltin derivatives Sug-CH=CH-CH2SnBu3 (7) by conversion into xanthate followed by its thermal rearrangement and subsequent SR2' reaction of resulting thiocarbonate with tri-n-butyltin hydride. Allyltin derivatives 7 undergo a controlled rearrangement with zinc chloride to dienoaldehydes CH2=CH-CH=CH-CH(OR)3CHO with the trans geometry across the internal double bond (3-E). Dienoaldehydes 3-E react with the C2-Wittig-type reagents [phosphoranes: Ph3P=CH-COR or phosphonates: (MeO)2P(O)CH2COR] to afford trienes 18 [CH2=CH-CH=CH-CH(OR)3CH=CH-C(O)-R), which undergo the intramolecular Diels-Alder reaction to give optically pure highly oxygenated bicyclo[4.3.0]indene derivatives 5 with the trans junction between the five and six-membered rings. Alternatively, the dienoaldehyde 3-E can be converted into - regioisomeric to 18 - triene 24 [CH2=CH-CH=CH-CH(OR)3C(O)-CH=CH-R], cyclization of which furnish optically pure bicyclo[4.4.0]decane derivatives 4 with the cis junction between both six-membered rings. On the other hand, sugar allylic bromides react with with tri-n-butyltin cuprate to afford a mixture of the primary and secondary allyltin derivatives [Sug-CH=CH-CH2SnBu3 (7) and [Sug-CH(SnBu3)-CH=CH2] (15) respectively]. Both isomers 7 and 15 might be converted into the trans dienoaldehyde 3-E by action of ZnCl2. However, thermal behavior of these regioisomers is different. The primary derivative 7 is stable up to at least 170 °C, while the secondary one (15) undergoes elimination of the tributylstannyl moiety already at 140 °C (boiling xylene) to afford dienoaldehyde with the cis-geometry across the internal double bond (3-Z). Such aldehyde was used for the preparation of - isomeric to 5 - derivative of bicyclo[4.3.0]indene with the cis-configuration between both rings (23). The stereochemistry of all these cyclizations might be rationalized assuming the endo-transition states of the intramolecular Diels-Alder reactions. Mechanism of the rearrangement of sugar allyltin derivatives 7 and 15 to unsaturated aldehydes 3-E and 3-Z is discussed.
Wydawca

Rocznik
Strony
661-678
Opis fizyczny
schem., bibliogr. 25 poz.
Twórcy
autor
autor
autor
  • Instytut Chemii Organicznej Polskiej Akademii Nauk, ul. M.Kasprzaka 44/52, 01-224 Warszawa
Bibliografia
  • [1] R. Noyori, M. Suzuki, Science, 1993, 259, 44; P.W. Collins, S.W. Djuric, Chem. Rev., 1993, 93, 1533 i odnośniki tam cytowane.
  • [2] L.E. Brammer, T. Hudlicky, Tetrahedron: Asymmetiy, 1998, 9, 2011 i odnośniki tam cytowane.
  • [3] T. Suami, S. Ogawa, Adv. Carbohydr. Chem., Biochem., 1990,48, 22; A.M. Gomez, G.O. Danelon, S. Valverde, J.C. Lopez, J. Org. Chem., 1998, 63, 9626 i odnośniki tam cytowane.
  • [4] G. Mehta, S.S. Ramesh, Chem. Commun., 2000, 2429.
  • [5] G. Mehta, S.S. Ramesh, Tetrahedron Lett., 2001,42, 1987.
  • [6] S. Hanessian, Total Synthesis o f Natural Products: The Chiron Approach, Pergamon Press, New York 1983; B. Fraser-Reid, Acc. Chem. Res., 1996, 29, 57 i odnośniki tam cytowane.
  • [7] P. Herczegh, M. Zsely, L. Szilagyi, I. Bajza, A. Kovacs, G. Batta, R. Bognar, Cycloaddition Reactions in Organic Chemistry, 1992,112 (ACS Symposium Series 494, Guiliano R.M. Edition) i odnośniki tam cytowane.
  • [8] B. Bernett, A. Vasella, Helv. Chim. Acta, 1979, 62, 1990; ibid., 1979, 62, 2400.
  • [9] A. Fuerstner, Angew. Chan. Int. Ed. Engl., 1993,32, 164 i odnośniki tam cytowane.
  • [10] S. Jarosz, B. Fraser-Reid, J. Org. Chem., 1989, 54, 4011.
  • [11] Przegląd: S. Jarosz, J. Carbohydr. Chem., 2001, 20, 93.
  • [12] Y. Yamamoto, H. Yatagi, Y. Ishihara, N. Maeda, K. Maruyama, Tetrahedron, 1984, 40, 2239; Y. Yamamoto, Acc. Chem. Res., 1987, 20, 243; Y. Yamamoto, N. Asao, Chem. Rev., 1993, 93, 2207; S. Sumida, M. Ohga, J. Mitani, J. Nokami, J. Am. Chem. Soc., 2000, 122, 1310 i odnośniki tam cytowane.
  • [13] S. Jarosz, E. Kozłowska, Polish J. Chem., 1998, 72, 815 i odnośniki tam cytowane.
  • [14] Y. Ueno, M. Okawara, J.A m . Chem. Soc., 1979, 101, 1893; Y. Ueno, S. Aoki, M. Okawara, J. Am. Chem. Soc., 1979, 101, 5454; Y. Ueno, H. Sano, M. Okawara, Synthesis, 1980, 1011.
  • [15] E. Kozłowska, S. Jarosz, J. Carbohydr. Chem., 1994,13, 889.
  • [16] A J. Mancuso, S.L. Huang, D. Swem, J. Org. Chem., 1978, 43, 2480.
  • [17] B.H. Lipshutz, E.L. Ellsworth, S.H. Dimock, D.C. Reuter, Tetrahedron Lett., 1989, 30, 2065.
  • [18] S. Jarosz, Tetrahedron, 1997, 53, 10765.
  • [19] S. Jarosz, K. Szewczyk, Tetrahedron Lett., 2001, 42, 3021.
  • [20] J.A. Verdone, J.A. Mangravite, N.M. Scarpa, H.G. Kuivila, J. Am. Chem. Soc., 1975, 97, 843.
  • [21] B.P. Roberts, T.M. Smits, Tetrahedron Lett., 2001, 42, 137; E.S. Huyser, Z. Garcia, J. Org. Chem., 1962, 27, 2716.
  • [22] S. Jarosz, E. Kozłowska, A. Jeżewski, Tetrahedron, 1997, 53, 10775.
  • [23] S. Jarosz, S. Skóra, Tetrahedron: Asymmetry, 2000, 11, 1425.
  • [24] S. Jarosz, J. Chem. Soc., Perkin Trans. 1, 1997, 3579.
  • [25] S. Jarosz, S. Skóra, Tetrahedron: Asymmetry, 2000 ,11, 1433.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0010-0078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.