Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | [Z] 56, 3-4 | 203--221
Tytuł artykułu

Dichroizm kołowy kwasów nukleinowych. Cz.2. Polimery

Autorzy
Warianty tytułu
EN
Circular dichroism of nucleic acids. Part 2. Polymers
Języki publikacji
PL
Abstrakty
EN
The review presents the theoretical basis for interpretations of CD spectra of polynucleotides. A simplified version of quantum theory of circular dichroism of a polynucleotide by Tinoco and Johnson is presented in details. It is generally assumed that the optical activity of these polymers is dominated by interactions between dipoles of in-plane transitions occuring at neighbouring bases. The interaction of dipoles coming from different bases strictly depends on geometrical arrangement of bases within the helix. As a result information about geometry of the helix can be inferred from the CD spectra. The circular dichroism caused by the disturbance of the electronic system of a base by the presence of a sugar ring is usually omitted in calculations. Such a theoretical approach allows to understand differences between CD spectra of random DNA and RNA. The distance of a base pair from helix axis appeared to be the main factor responsible for these differences]. The approach fails in a case of polymers of non-random sequences, for example containing a repetitive motif of two bases. It is exemplified for the d(CG)n oligomers forming left-handed double helix called Z-DNA, where none of the theoretical calculations is able to predict the inversion of a CD spectrum characteristic for the Z form .
Wydawca

Rocznik
Strony
203--221
Opis fizyczny
Bibliogr. 41 poz., wykr.
Twórcy
  • Centrum Badań Molekularnych i Makromolekularnych PAN ul. Sienkiewicza 112, 90-363 Łódź
Bibliografia
  • [1] R.E Dickerson, Scientific American, 1983, 249, 94.
  • [2] W.C. Johnson Jr., I. Tinoco Jr., Biopolymers, 1969, 7, 727.
  • [3] J.G. Kirkwood, J. Chem. Phys., 1937, 5, 479.
  • [4] N.N.H. Teng, M.S. Itzkowitz, I. Tinoco Jr., J. Am. Chem. Soc., 1971, 93. 6257.
  • [5] D.S. Moor, T.E. Wagner. Biopolymers, 1974, 13, 977.
  • [6] P.M. Bayley, E.B. Nielsen, J.A. Schellman, J. Phys. Cherr , 1969, 73, 228.
  • [7] V. Rizzo, J.A. Schellman, Biopolymers, 1984, 23, 435.
  • [8] J.A. Shellman, W.J. Becktel, Biopolymers, 1983, 22, 171.
  • [9] G.E. Schultz, R.H. Schirmer, Principles of Protein Structure, Springer-Verlag, New York 1979, s. 18.
  • [10] W. Saenger, Nucleic Acids Structure, Springer-Verlag, New York 1984.
  • [11] L.C. Cech, W. Hug, I. Tinoco Jr., Biopolymers, 1976,15. 131.
  • [12] H. DeVoe, J. Chem. Phys., 1965, 43, 3199.
  • [13] C. Rosini, M. Zandomeneghi, P. Salvadori, Tetrahedron, 1993, 4, 545.
  • [14] D.W. Miles, L.B. Townsend, M J. Robins, R.K. Robins, W.H. Inskeep, H. Eyring, J. Am. Chem. Soc., 1971, 93, 1600.
  • [15] D.W. Miles, M.J. Robins. R.K. Robins, M.W. Winkley, H. Eyring, J. Am. Chem. Soc., 1969, 91,831.
  • [16] D.W. Miles, S.J. Hahn, R.K. Robins, M.J. Robins, H. Eyring, J. Phys. Chem., 1968, 72, 1483.
  • [17] D.S. Moore, Biopolymers, 1980, 19, 1017.
  • [18] A.L. Williams Jr., D.S. Moore, Biopolymers, 1983, 22, 755.
  • [19] S. Amott, D.W.L. Hukins, Biochem. Biophys. Res. Commun., 1972, 47, 1504.
  • [20] D.A. Marvin, M. Spencer, M.H.F. Wilkins, L.D. Hamilton, J. Mol. Biol., 1961, 3, 547.
  • [21] S. Amott, D.W.L. Hukins, S.D. Dover, Biochem. Biophys. Res. Commun., 1972, 47, 1392.
  • [22] M. Chamberlin, R. Baldvin, P. Berg, J. Mol. Biol., 1963, 7, 334.
  • [23] I. Tinoco Jr., J. Chim. Phys., 968, 65, 91.
  • [24] D.S. Studdert. R.C. Davis. Biopolymers. 1974. 13. 1377.
  • [25] D.S. Moore. T.E. VVagrer. Biopolymers, 1973, 12. 201.
  • [26] D.M. Gray, L. Tinoco Jr.. Biopolymers, 1970. 9, 223.
  • [27] C.L. Cech, I. Tinoco Jr., Biopolymers. 1977, 16, 43.
  • [28] S.B. Zimmerman. G.H. Cohen. D.R. Davies. J. Mol. Biol., 1975, 92, 181.
  • [29] F.M. Pohl, T.M. Jovin, J. Mol. Biol.. 1972. 67. 375.
  • [30] A.HJ. Wang. G J. Quigley, FJ. Kolpak, J.L. Crawford, J.H. Van Boom. G Van der Marel. A. Rich. Nature. 1979. 282 680.
  • [31] D.J. Patel, L.L. Canuel, F.M. Pohl. Proc. Natl. Acad. Sci. U.S.A., 1979, 76. 2508.
  • [32] D.G. Gorenstein, B.A. Luxon, E.M. Goldfield, K. Lai, D. Vegeais, Biochemistry. 1982, 21, 580.
  • [33] D J. Patel, S.A. Kozlovvski, A. Nordheim, A. Rich. Proc. Natl. Acad. Sci. U.S.A., 1982, 79. 1413.
  • [34] TJ. Thamann. L.C. Lord, A.HJ. Wang, A. Rich, Nucleic Acids Res., 1981, 9, 5443.
  • [35] D.E. Callahan. T.M. Hooker Jr.. Biopolymers. 1987. 26. 457.
  • [36] P. Richterich, F.M. Pohl, Biopolymers, 1987. 26, 231.
  • [37] D.S. Studdert, R.C. Davis, Biopolymers, 1974, 13, 1391.
  • [38] L. Chinsky, B. Jolies, A. Laigle, P.Y. Turpin, J. Taboury, E. Taillander, Biopolymers, 1984,23, 1931.
  • [39] W. Hug. I. Tinoco Jr., J. Am. Chem. Soc., 1974, 96, 665.
  • [40] C.Y. Chen, B.H. Pheiffer, S.B. Zimmerman, S. Hanlon, Biochemistry, 1983, 22, 4746.
  • [41] S.R. Fish. C.Y. Chen. G.J. Thomas Jr., S. Hanlon, Biochemistry, 1983, 22, 4751.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0010-0058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.