Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | [Z] 54, 1-2 | 87--103
Tytuł artykułu

Jony metali jako czynnik ingerujący w oddziaływaniach poliamin z fragmentami kwasów nukleinowych

Warianty tytułu
EN
metal ions as interfering factor in interactions of polyamines with fragments of nucleic acids
Języki publikacji
PL
Abstrakty
EN
Structurally simple aliphatic polyamines: putrescine (Put), spermidine (Spd) and spermine (Spm) occur in the cells of living organisms (human, animals, plants and bacteria) in relatively high concentrations. These compounds participate in many living processes [1-4 and references therein]. High basicity of polyamines implies that in the physiological conditions they appear in the protonated form and thus can interact with the negative fragments of other biomolecules. According to the polyelectrolytic theory of Manning, structural changes of particular molecules in interactions with the other components of the system depend mainly on the charge of the reagents, however, this approach does not explain a high specificity of certain reactions. It has been recently suggested that apart from the charge, also the polycation structure seems to play an important role. Computer analysis of the potentiometric titration data allowed a determination of the stability constants of molecular complexes formed by polyamines and fragments of the nucleic acids. Analysis of the titration and the spectral data indicates that at least two active centers are needed to obtain a relatively stable adduct. The thesis saying that the main sites of interactions are the protonated amine groups from PA and the negative or high electron density fragments of nucleosides or nucleotides (ion-dipole or ion-ion interactions) has been confirmed by the pH ranges of the molecular complexes occurrence. In nucleosides and nucleotides the main sites of metallation are the donor endocyclic N(3) atoms from the pyrimidine ring and N(1) or N(7) atoms from the purine ring. Phosphate groups of nucleotides are also effective centers of reaction. Polyamines change the character of the coordination dichotomy (mixture of isomers with the N(1) or N(7) coordination) observed in the metal-nucleoside (or nucleotide) systems. In general, with increasing length of the polyamine, the tendency to formation of heteroligand mixed complexes decreases and, interestingly, this tendency is exactly the opposite to that of formation of molecular complexes Nuc/PA. Already small changes in the polyamine length significantly affect their complex formation properties and reactions with metal ions or molecules in living cells. This explains the differences in the properties of biogenic amines and their biologically inactive homologues. In the ternary systems Cu/Nuc/Spm and Cu/NMP/Spm some interesting differences were observed in the coordination mode of the complexes. In the complex Cu(Nuc)(Spm) the metal ion was found to coordinate four nitrogen atoms from the polyamine in the equatorial plane and the N(3) or N(7) atom at the axial position (coordination structure of the square pyramid). In the system with the nucleotide, Cu(II) binds the phosphate group, while the polyamine is involved in non-covalent interaction with the donor nitrogen atoms from the purine or pyrimidine base and forms an adduct with intermolecular non-covalent complex-ligand interactions. In the systems with nucleosides, copper ions inhibit the interactions of adenosine or cytidine with polyamines. On the other hand, spermine involved in the non-covalent interaction with a nucleotide base blocks the potential metallation sites of AMP or CMP, changing essentially the character of coordination. Considering the role of the complexation processes in the above model systems, it should be added that formation of PA complexes with metal ions and fragments of nucleic acids is a factor ensuring homeostasis of polyamines in living cells. Reduction of the effect of diamine oxidase on the amines involved in the complexation processes increases their lifetime in living organisms.
Słowa kluczowe
Wydawca

Rocznik
Strony
87--103
Opis fizyczny
tab., schem., bibliogr. 79 poz.
Twórcy
autor
  • Wydział Chemii Uniwersytetu im. Adama Mickiewicza ul. Grunwaldzka 6, 60-780 Poznań
  • Wydział Chemii Uniwersytetu im. Adama Mickiewicza ul. Grunwaldzka 6, 60-780 Poznań
  • Wydział Chemii Uniwersytetu im. Adama Mickiewicz ul. Grunwaldzka 6, 60-780 Poznań
Bibliografia
  • [1] L. Łomozik, Metal complexes with polyamines, [w:] Handbook of Metal-Ligand Interactions in Biological Fluids, G. Berthon (red.), M. Dekker, New York 1995, vol. 1, s. 686.
  • [2] L. Łomozik, Wiad. Chem., 1994, 48, 339.
  • [3] C. W. Tabor, H. Tabor, Ann. Rev. Biochem., 1984, 53, 749.
  • [4] Progress in Polyamine Research, V. Zappia, A. E. Pegg (red.), Plenum Press, New York 1988.
  • [5] C. W. Tabor, H. Tabor, Microbiol. Rev., 1985, 49, 81.
  • [6 ] J. Janne, L. A lhonen, P. Leinonen, Ann. Chem., 1991, 23, 241.
  • [7] B. W. Metcalf, P. Bey, C. Danzin, M. J. Jung, J. Casara, J. P. Vevert, J. Am. Chem. Soc., 1978, 100, 2551.
  • [8] U. Sen, S. Guha, Neoplasma, 1990, 37, 521.
  • [9] S. M. Boyle, M. F. MacIntyre, B. H. Sells, Biochim. Biophys. Acta, 1977, 477, 21.
  • [10] C. W. Tabor, H. Tabor, Ann. Rev. Biochem., 1976, 45, 285.
  • [11] 1. Higaki, M. Matsu i Yuasa, H. Terakura, S. Kinoshita, S. Otani, Gastroenterology, 1994, 106, 1024.
  • [12] Z. N. Canellakis, L. L. Marsh, P. Young, P. K. Bondy, Cancer Res., 1984, 44, 3464.
  • [13] M. H. Goyns, J. Theor. Biol., 1982, 97, 577.
  • [14] A. E. Pegg, Cancer Res., 1988, 48, 759.
  • [15] W. C. Russel, B. Precious, S. R. Martin, P. M. Bayley, EMBO J., 1983, 2, 1647.
  • [16] L. J. Marton, D. R. Morris, Inhibition of Polyamine Metabolism. Biological Significance and Basis for New Therapies, P. P. McCann, A. E. Pegg, A. Sjoerdsma (red.), Academic Press, New York 1987, s. 79.
  • [17] S. S. Cohen, Fed. Proc. Fed. Am. Soc. Exp. Biol., 1982, 41, 3061.
  • [18] O. Heby, L. Persson, Trends Biochem. Sei., 1990, 15, 153.
  • [19] S. Sarhan, N. Seiler, Biol. Chem. Hoppe-Seyler, 1989, 370, 1279.
  • [20] R. W. Davis, D. R. Morris, P. Coffino, Microbiol. Rev., 1992, 56, 280.
  • [21] B. G. Feuerstein , J. Szollsi, H. S. Basu, L. J. Marton, Cancer Res., 1992, 52, 6782.
  • [22] F. Schuber, Biochem. J., 1989, 260, 1.
  • [23] T. J. Thomas, U. B. Gunnia, T. Thomas, J. Biol. Chem., 1991, 266, 6137.
  • [24] T. J. Thomas, R. P. Messner, J. Mol. Biol., 1988, 201, 463.
  • [25] P. M. Vertino, R. J. Bergeron, P. F. Camanaugh Jr., C. Porter, Biopolymers, 1987, 26, [26] H. S. Basu, L. J. Marton, Biochem. J., 1987, 244, 243.
  • [27] T. J. Thomas, Z. N. Canellakis, V. A. Bloomfield, Biopolymers, 1985, 24, 725.
  • [28] J. A. Schellman, N. Parthasarathy, J. Mol. Biol., 1994, 175, 313.
  • [29] T. J. Thomas, V. A. Bloomfield, Biopolymers, 1983, 22, 1097.
  • [30] G. E. Plum, P. G. Arscott, V. A. Bloomfield, Biopolymers, 1990, 30, 631.
  • [31] G. S. Manning, J. Chem. Phys., 1969, 51, 924.
  • [32] G. S. Manning, ibid., 1969, 51, 3249.
  • [33] G. S. Manning, Q. Rev. Biophys., 1978, 2, 179.
  • [34] G. S. Manning, ibid., 1978, 11, 179.
  • [35] G. S. Manning, Acc. Chem. Res., 1979, 12, 443.
  • [36] G. S. Manning, J. Phys. Chem., 1981, 85, 870.
  • [37] G. S. Manning, J. Chem. Phys., 1988, 89, 3772.
  • [38] G. S. Manning, J. Phys. Chem., 1984, 8 8 , 6654.
  • [39] K. S. Srivenugopol, D. E. Wemmer, D. R. Morris, Nucleic Acid Res., 1987, 15, 2563.
  • [40] S. A. Allison, J. C. Herr, J. M. Schur, Biopolymers, 1981, 20, 469.
  • [41] R. G. Friedman, G. S. Manning, ibid., 1984, 23, 2671.
  • [42] D. Esposito, P. Del Vecchio, G. Barone, J. Am. Chem. Soc., 1997, 119, 2606.
  • [43] W. H. Braunlin, T. J. Strick, M. T. Record Jr., Biopolymers, 1982, 21, 1301.
  • [44] H. S. Basu, H. C. A. Schwieterit, B. G. Feuerstein, L. J. Marton, Biochem. J., 1984, 269, 329.
  • [45] B. N. Palmer, H. K. Powell, J. Chem. Soc., Dalton Trans., 1974, 2086.
  • [46] B. N. Palmer, H. K. Powell, ibid., 1974, 2089.
  • [47] G. R. Hedwig, H. K. Powell, ibid., 1973, 793.
  • [48] D. Ainens, S. Bunce, F. Onasch, R. Parker, III, C. Hurwitz, S. Clemans, Biophys. Chem., 1983, 17, 67.
  • [49] A. Anichini, L. Fabbrizzi, R. Barbucci, A. Mastroianni, J. Chem. Soc., Dalton Trans., 1977, 2224.
  • [50] L. Bruun, E. V. S. Hogdall, J. Vuust, G. Houen, Acta Chim. Scand., 1998, 52, 921.
  • [51] I. Labadi, E. Jenei, R. Lahti, H. Lonnberg, ibid., 1991, 45, 1055.
  • [52] A. Corazza, M. L. DiPaolo , L. Zennaro, A. Rigo, Appl. Magn. Reson., 1994, 7, 89.
  • [53] C. De Stefano, A. Gianguzza, S. Sammartano, Talanta, 1993, 40, 629.
  • [54] L. Abate, A. De Robertis, C. Rigano, J. Solution Chem., 1993, 22, 339.
  • [55] P. G. Daniele, A. De Robertis, C. De Stefano, D. Gastaldi, S. S ammartano, Ann. Chim. (Rome), 1993, 83, 575.
  • [56] A. De Robertis, A. Gianguzza, G. Patane, S. Sammartano, J. Chem. Res. (S), 1994, 182.
  • [57] A. Casale, A. De Robertis, F. Licastro, C. Rigano, ibid., 1990, (S) 204, (M) 1601.
  • [58] A. De Robertis, C. De Stefano, G. Patane, Thermochim. Acta, 1992, 7, 209.
  • [59] A. De Robertis, C. De Stefano, G. Patane, J. Solution Chem., 1993, 22, 927.
  • [60] C. De Stefano, O. Giuffre, S. Sammartano, J. Chem. Soc., Faraday Trans., 1998, 94, 1091.
  • [61] L. Łomozik , A. Gąsowska, J. Inorg. Biochem., 1996, 62, 103.
  • [62] L. Łomozik , A. Gąsowska, L. Bolewski, J. Chem. Soc., Perkin Trans. 2, 1997, 1161.
  • [63] M. Delfini, A. L. Segre, F. Conti, R. Barbucci, V. Barone, P. Ferruti, ibid., 1980, 900.
  • [64] L. Łomozik , A. Gąsowska, J. Inorg. Biochem., 1998, 72, 37.
  • [65] M. L. Antonelli, B. Balzamo, V. Carunchio, E. Cernia, R. Purrello, ibid., 1988, 32, 153.
  • [66] M. L. Antonelli, V. Carunchio, E. Cernia, R. Purrello, ibid., 1989, 37, 201.
  • [67] L. Łomozik , A. Odani, O. Yamauchi, Inorg. Chim. Acta, 1994, 219, 107.
  • [68] C. R. Bertsch, W. C. Fernelius, B. P. Block, J. Phys. Chem., 1958, 62, 444.
  • [69] P. Paoletti, Adv. Mol. Rel. Inter. Process., 1980, 18, 73.
  • [70] L. Łomozik , A. Wojciechowska, Polyhedron, 1989, 8 , 2643.
  • [71] A. Wojciechowska, L. Bolewski, L. Łomozik, Monatsh. Chem., 1991, 122, 131.
  • [72] A. Gąsowska, L. Łomozik, ibid., 1995, 126, 13.
  • [73] L. Łomozik , A. Gąsowska, L. Bolewski, J. Inorg. Biochem., 1996, 63, 191.
  • [74] A. Gąsowska, L. Łomozik, Polish J. Chem., 1999, 73, 465.
  • [75] L. Łomozik , R. Bregier-Jarzębowska, ibid., 1999, 73, 927.
  • [76] L. Łomozik , L. Bolewski, R. Bregier-Jarzębowska, ibid., 1995, 69, 197.
  • [77] L. Łomozik, L. Bolewski, R. Dworczak, J. Coord. Chem., 1997, 41, 261.
  • [78] A. Gąsowska, L. Łomozik, R. Bregier-Jarzębowska, Polish J. Chem., 1999, 73, 909.
  • [79] A. Gąsowska, L. Łomozik, przygotowane do druku.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS1-0008-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.