Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | nr 2 | 51-74
Tytuł artykułu

Large population evolutionary games played within a life history framework

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Wieloosobowe gry ewolucyjne typu „cyklu życiowego”
Języki publikacji
EN
Abstrakty
EN
In many evolutionary games, such as parental care games, the length of time spent playing a realisation of the game is dependent on the strategy of an individual. Also, the payoff of a deserting male cannot be defined in isolation from the strategies used in the population as a whole. Such games should be defined as games against the field (large population games) rather than two-player games. Several examples are presented to illustrate the theory of such games against the field.
PL
W dziedzinie gier ewolucyjnych zwykle zakłada się, że każda jednostka gra wiele razy w dany rodzaj gry dwuosobowej, z tym że za każdym razem jej przeciwnik zmienia się. W przypadku gier ewolucyjnych, takich jak „wojna na wyczerpanie” czy „opieka rodzicielska”, czas wykorzystany na realizację gry zależy od strategii wybranej przez jednostkę. W takich przypadkach należy brać pod uwagę nie tylko średnią wypłatę z każdej realizacji gry, ale też średni czas potrzebny na jej realizację. W tej sytuacji model standardowej gry dwuosobowej powinien być zastąpiony grą wieloosobową. Dodatkowo, w grach typu „opieka rodzicielska” wypłata samca, który nie opiekuje się swoimi dziećmi, zależy od możliwości uzyskania dodatkowych partnerek, co z kolei zależy od strategii używanych w całej populacji. W pracy rozważono kilka przykładów gier wieloosobowych, które są wygenerowane przez grę dwuosobową.
Wydawca

Rocznik
Tom
Strony
51-74
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland, david.ramsey@ul.ie
Bibliografia
  • [1] APALOO J., Revisiting strategic models of evolution: the concept of neighbourhood invader strategies,Theoretical Population Biology, 1997, 52, 71–77.
  • [2] APALOO J., Single species evolutionary dynamics, Evolutionary Ecology, 2003, 17, 33–49.
  • [3] BALSHINE-EARN S., EARN D.J.D., An evolutionary model of parental care in St. Peter’s Fish, Journal of Theoretical Biology, 1997, 184, 423–431.
  • [4] BEDDINGTON J.R., Mutual interference between parasites and predators and its effect on searching efficiency, Journal of Animal Ecology, 1975, 44, 331–340.
  • [5] CANNINGS and WHITTAKER J.C., The finite horizon war of attrition, Games and Economic Behaviour,1995, 11, 193–226.
  • [6] COX D.R., A use of complex probabilities in the theory of stochastic processes, [in:] Selected Statistical Papers of Sir David Cox: Foundations of Statistical Inference, Theoretical Statistics, Time Series and Stochastic Processes, Vol. 2, Cambridge University Press, 2006, 439–446.
  • [7] DEANGELIS D.L., GOLDSTEIN R.A., O’NEILL R.V., A model for trophic interaction, Ecology, 1975,56, 881–892.
  • [8] ERIKSSON A., LINDGREN K., LUNDH T., War of Attrition with implicit time costs, Journal of Theoretical Biology, 2004, 203, 319–332.
  • [9] ESHEL I., Evolutionary and continuous stability, Journal of Theoretical Biology, 1983, 103, 99–111.
  • [10] ESHEL I., MOTRO U., Kin selection and strong evolutionary stability of mutual help, Theoretical Population Biology, 1981, 19, 420–433.
  • [11] HABERMAN S., PITACCO E., Actuarial models for disability insurance, Chapman & Hall/CRC, 1999.
  • [12] HOUSTON A.I., MCNAMARA J.M., A self-consistent approach to paternity and parental effort, Philosophical Transactions of the Royal Society of London B, 2002, 357, 351–362.
  • [13]MAYNARD SMITH J., PRICE G.R., The logic of animal conflict, Nature, 1973, 246, 209–221.
  • [14]MAYNARD SMITH J., Parental investment: a prospective analysis, Animal Behavior, 1977, 25, 1–9.
  • [15]MAYNARD SMITH J., Evolution and the Theory of Games, Cambridge University Press, 1982.
  • [16]MCCLEAN S.I., MILLARD P.H., A decision support system for bed-occupancy management and planning hospitals, Journal of Mathematics Applied in Medicine and Biology, 1995, 12, 249–257.
  • [17]MCNAMARA J.M., SZÉKELY T., WEBB J.N., HOUSTON A.I., A dynamic game theoretic model of parental care, Journal of Theoretical Biology, 2000, 205, 605–623.
  • [18] RAMSEY D.M., A large population game theoretic two-sided mate choice problem, Submitted to International Game Theory Review, 2009.
  • [19] SCHAFFER M.E., Evolutionarily stable strategies for a finite population and a variable contest size,Journal of Theoretical Biology, 1988, 132, 469–478.
  • [20] SELTEN R., A note on evolutionarily stable strategies in asymmetric animal contests, Journal of Theoretical Biology, 1980, 84, 93–101.
  • [21] SHAW B., MARSHALL A.H., MCCLEAN S.I., Estimating costs for a group of geriatric patients using the Coxian phase-type distribution, Statistics in medicine, 2007, 26, 2716–2729.
  • [22] STEPHENS D.W., KREBS J.R., Foraging theory, Princeton University Press, 1987.
  • [23] SZÉKELY T., WEBB J.N., CUTHILL I.C., Mating patterns, sexual selection and parental care: an integrative approach, [in:] Verterbrate Mating Systems, M. Apollonio, M. Festa-Bianchet, D. Mainardi (eds.), World Scientific Publishing, 2000, pp. 194–223.
  • [24] VAN DER MEER J., SMALLEGANGE I.M., Interference among a finite number of predators: a stochastic version of the Beddington-DeAngelis functional response, To appear in Journal of Animal Ecology,2009.
  • [25]WEBB J.N., HOUSTON A.I., MCNAMARA J.M., SZÉKELY T., Multiple patterns of parental care, Journal of Theoretical Biology, 1999, 58, 983–993.
  • [26] YAMAMURA and TSUJI N., Parental Care as a game, Journal of Evolutionary Biology, 1993, 6, 103–127.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ7-0007-0067
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.