Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 82, nr 10 | 1923-1939
Tytuł artykułu

Recent Developments in Thermodynamics of Mixtures Containing 1,3-Dialkylimidazolium Alkylsulfate Ionic Liquids

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mixtures of ionic liquids, (ILs), with organic solvents exhibit a most interesting research area in thermodynamics. This report presents the ge eral discussion on the solid-liquid equilibria (SLE), high pressure solid-liquid equilibria, binary and ternary liquid-liquid equilibria (LLE), excess molar volumes, Vm E and ac tiv ity co ef fi cients at in finite dilution, gamma 1 Infinity of 1,3-dialkylimidazolium alkylsulfate ionic liquids, in alcohols and hydrocarbons. New sol u bil ity data of 1,3-dimethylimidazolium methylsulfate, [MMIM][CH3SO4] and 1-butyl-3-methylimidazolium octylsulfate, [BMIM][OcSO4] in methanol are presented. The solubilities have been measured by a dynamic method from 220 K to the melting point of the ionic liquid. Solubility of [MMIM][CH3SO4] and [BMIM][OcSO4] in methanol is very similar because of close melting temperatures of these ILs. The data were correlated by means of the NRTL and UNIQUAC equations utilizing parameters derived from the solid-liquid equilibrium. The melting point, the glass transition temperature and the enthalpy of fusion of [BMIM][OcSO4] were determined by the differential scanning calorimetry (DSC). The solubility of 1,3-dialkylimidazolium alkylsulfate ionic liquids in alcohols and hydrocarbons decreases with an in crease of the molecular weight of the solvent. Usually, with the exception of methanol and short chain alcohols, the mutual liquid-liquid equilibrium with the upper critical solution temperature (UCST) is observed in the liquid phase. This review presents a survey of the most recent data material including current developments and aspects of research activities needed in the future.
Wydawca

Rocznik
Strony
1923-1939
Opis fizyczny
Bibliogr. 77 poz., rys.
Twórcy
  • Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland phone: +48-22-6213115; Fax: +48-22-6282741, ula@ch.pw.edu.pl
Bibliografia
  • 1.   Valderrama J.O. and Robles P.A., Ind. Eng. Chem. Res., 46, 1338 (2007).
  • 2. Dupont J. and Suarez P.A.Z., Phys. Chem. Chem. Phys., 8, 2441 (2006).
  • 3.   Mantz R.A. and Truove P.C., Ionic Liquids in Synthesis', Wasserscheid P., Welton T., Eds.; Wiley-VCH: Weinheim, Germany, 2003.
  • 4.   Albrecht T., Moth-Poulsen K., Christensen J.B., Hjelm J., Bj0rnholm T. and Ulstrup J., J. Am. Chem. Soc., 128, 6574 (2006).
  • 5.   Fredlake C.P., Crosthwaite J.M., Hert D.G., Aki N.YK. and Brennecke J., J. Chem. Eng. Data, 49, 954 (2004).
  • 6.   de Azavedo R.G., Esperanca J.M.S.S., Najdanovic-Visak V., Visak Z.P., Guedes H. J.R., da Ponte M.N. and Rebelo L.P.N.J., J. Chem. Eng. Data, 50, 997 (2005).
  • 7.   Diedrichs A. and Gmehling J., Fluid Phase Equilib., 244, 68 (2006).
  • 8.   Meindersma G.W., Podt A.J.G. and de Haan A.B., Fuel Process Technol., 87, 59 (2005).
  • 9.   Fuller J., Carlin R.T. and Osteryoung R.A., J. Electrochem. Soc., 144, 3881 (1997).
  • 10.    Matsumoto H., Sakaebe H. and Tatsumi K., J. Power Sources, 146, 45 (2005).
  • 11.    Lewandowski A. and Galiński M., General Properties of łonie Liąuids as Electrolytes for Carbon-based Double Layer Capacitors, New Carbon Based Materials for Electrochemical Energy Stor agę Systems. Barsukov et al, Eds., 2006 Springer, The Netherlands, pp. 73-83.
  • 12.    Buzzeo M.C., Evans R.G. and Compton R.G., Chem. Phys. Chem., 5, 1106 (2004).
  • 13.    Ohno H., Electrochemical Aspects of Ionic Liąuids, Wiley-Interscience, Hoboken, NJ, 2005.
  • 14.    Stepnowski R, Mrozik W. and Nichthauser J., Emiron. Sci. Technol, 41, 511 (2007).
  • 15.    Wu B., Reddy R.G. and Rogers R.D., Solar Forum 2001, Solar energy: The Power to Choose, April 21-25, 2001, Washington, DC, USA.
  • 16.    Crosthwaite J.M., Aki S.N.Y, Maginn EJ. and Brennecke J.F., Fluid Phase Eąuilib., 228-229, 303 (2005).
  • 17.    Domańska U. and Marciniak A., J. Chem. Thermodyn., 37, 577 (2005).
  • 18.    Domańska U. and Bogel-Łukasik R., J. Phys. Chem. B, 109, 12124 (2005).
  • 19.    Arlt W., Seiler M., Sadowski G., Frey H. and Kautz H., DE Pat. No 10160518.8.
  • 20.    Arce A., Earle M.J., Rodriguez H. and Seddon K.R., Green Chem., 9, 70 (2007).
  • 21.    Crosthwaite J.M., Muldoon M J., Aki S.N.Y., Maginn EJ. and Brennecke J.F., J. Phys. Chem. B, 110, 9354 (2006).
  • 22.    Domańska U., Thermochim. Acta, 448, 19 (2006).
  • 23.    Pereiro A.B., Tojo E., Rodriąuez A., Canosa J. and Tojo J., Green Chem., 9, 262 (2007).
  • 24.    David W., Letcher T.M., Ramjugernath D. and Raal J.D., J. Chem. Thermodyn., 35, 1335 (2003).
  • 25.    Letcher T.M., Deenadayalu N., Soko B., Ramjugernath D., Nevines A. and Naicker P.K., J. Chem. Eng. Data, 48, 708 (2003).
  • 26.    Letcher T.M., Soko B., Reddy P. and Deenadayalu N., J. Chem. Eng. Data, 48, 1587 (2003).
  • 27.    Deenadayalu N., Letcher T.M. and Reddy P, J. Chem. Eng. Data, 50, 105 (2005).
  • 28. Letcher T.M., Domańska U., Marciniak M. and Marciniak A., J. Chem. Thermodyn., 37, 587 (2005).
  • 29. LetcherT.M.,DomańskaU.,MarciniakM.and MarciniakA.,J. Chem. Thermodyn.,37,1327(2005).
  • 30.    Letcher T.M., Marciniak A., Marciniak M. and Domańska U., J. Chem. Eng. Data, 50, 1294 (2005).
  • 31.    Mutelet F. and Jaubert J-N., J. Chem. Thermodyn., 39, 1144 (2007).
  • 32.    Domańska U. and Marciniak A., J. Phys. Chem. B, 111, 11984 (2007).
  • 33.    Kato R., Krummen M. and Gmehling J., Fluid Phase Equilib., 224, 47 (2004).
  • 34.    Kato R. and Gmehling J., J. Chem. Thermodyn., 37, 603 (2005).
  • 35.    Jork C., Kristen C., Pieraccini D., Stark A., Chiappe C., Beste Y.A. and Arlt W., J. Chem. Thermodyn., 37, 537 (2005).
  • 36.    Heintz A., Kulikov D.Y and Verevkin S.P., J. Chem. Eng. Data, 46, 1526 (2001).
  • 37.    Heintz A., Kulikov D.Y. and Verevkin S.P., J. Chem. Thermodyn., 34, 1341 (2002).
  • 38.    Heintz A., Kulikov D.Y and Verevkin S.P., J. Chem. Eng. Data, 47, 894 (2002).
  • 39. Krummen M., Wasserscheid P. and Gmehling J., J. Chem. Eng. Data, 47, 1411 (2002).
  • 40. Domańska U. and Marciniak A., J. Chem. Thermodyn., 40, 860 (2008), doi: 10.1016/j.jct.2008.01.004;available online 12 Ianuary 2.00&.
  • 41. Domańska U., Pobudkowska A. and Eckert F., J. Chem. Thermodyn., 38, 685 (2006).
  • 42. Domanska U., Pobudkowska A. And Wiśniewska A., J. Solution Chem., 35,311 (2006).
  • 43. DomańskaU., Pobudkowska A. and Eckert F., Green Chem., 8, 268 (2006).
  • 44. Domańska U. and Laskowska M., J. Solution Chem., (2008), in press.
  • 45. Domańska U., Laskowska M. and Marciniak A., J. Chem. Eng. Data., 53, 498 (2008).
  • 46. Wilson G.M., J. Am. Chem. Soc., 86, 127 (1964).
  • 47. Renon H. and Prausnitz J.M., AIChEJ., 14, 135 (1968).
  • 48. Abrams D.S. and Prausnitz J.M., AIChEJ., 21, 116 (1975).
  • 49. Wingefors S., J. Chem. Tech. Biotechnol., 31, 530 (1981).
  • 50. Kato R. and Gmehling J., Fluid Phase Equilib., 226, 37 (2004).
  • 51. Heintz A., Lehmann J.K. and Wertz C., J. Chem. Eng. Data, 48, 472 (2003).
  • 52. Crosthwaite J.M., Akai S.N.Y., Maginn E. J. and Brennecke J.F., J. Phys. Chem. B, 108, 5113 (2004).
  • 53. Meindersma G. W., Podt A.J.G. and de Haan A.B., Fluid Phase Equilib., 247, 158 (2006).
  • 54. Arce A., Rodriguez O. and Soto A., Chem. Eng. Science, 61, 6929 (2006).
  • 55.    Arce A., Rodriguez O. and Soto A., Fluid Phase Eąuilib., 242, 164 (2006).
  • 56. Arce A., Rodriguez O. and Soto A., Green Chem., 9, 247 (2007).
  • 57.    Arce A., Pobudkowska A., Rodriguez O. and Soto A., Chem. Eng. J., 133, 213 (2007).
  • 58. Funke H., Wetzel M. and Heintz A., Pure Appl. Chem., 61, 1429 (1989).
  • 59. Domańska U. and Morawski P., Green Chem., 9, 361 (2007).
  • 60.    Domańska U. and Morawski P., Phys. Chem. Chem. Phys., 4, 2264 (2002).
  • 61. Baranowski B., Polish J. Chem., 52, 1789 (1978).
  • 62.   Baranowski B. and Moroz A., Polish J. Chem., 56, 379 (1982).
  • 63.   Dudek D. and Baranowski B., Polish J. Chem., 65, 1357 (1991).
  • 64.   Dudek D. and Baranowski B., Polish J. Chem., 68, 1267 (1994).
  • 65. Nagaoka K. and Makita T., Int. J. Thermophys., 9, 61 (1988).
  • 66.   Nagaoka K. and Makita T., Int. J. Thermophys., 9, 535 (1988).
  • 67.   Nagaoka K. and Makita T., Int. J. Thermophys., 8, 671 (1987).
  • 68.   Nagaoka K., Makita T., Nishiguchi N. and Moritoki M., Int. J. Thermophys., 10, 27 (1989).
  • 69.   Rodriguez H. and Brennecke J.F., Chem. Eng. Data, 51, 2145 (2006).
  • 70.   Gómez E., Gonzalez B., Calvar N., Tojo E. And Dominguez A., J. Chem. Eng. Data, 51, 2096 (2006).
  • 71.   Gołdon A., Dąbrowska K. and Hofman T., J. Chem. Eng. Data, 52, 1830 (2007).
  • 72. Hofman T., Gołdon A., Nevines A. and Letcher T.M., J. Chem. Thermodyn., 40, 580 (2008) doi: 10.1016/j.jct. 2007.11.011; available online 5 December 2007.
  • 73. Pereiro A.B., Santamarta F., Tojo E., Rodriguez A. and Tojo J., J. Chem. Eng. Data, 51, 952 (2006).
  • 74. Tiegs D., Gmehling J., Medina A., Soares M., Bastos J., Alessi P. and Kikic L, Activity Coefficients at Infinite Dilution, Chemistry Data Series, DC, Part l, 1986, p. 586.
  • 75. Mutelet F. and Jaubert J-N., J. Chromatogr. A, 1102, 256 (2006).
  • 76. Krummen M., Gruber D. and Gmehling J., Ind. Eng. Chem. Res., 39, 21 14 (2000).
  • 77. Möllmann C. and Gmehling J., J. Chem. Eng. Data, 42, 35 (1997).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0024-0149
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.