Czasopismo
2006
|
Vol. 6, No. 3-4
|
178-187
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Odkształcalność blach ze stali austenitycznej odpornej na korozję
Języki publikacji
Abstrakty
The forming limits of austenitic stainless steel sheets were studied. It was found that the observed limit of straining in stretch forming, when both of the principal stresses are positive, is not set by localized necking, but instead by shearing fracture in the through thickness direction. Thus, the Marciniak-Kuczynski type of analysis, which has recently been successfully applied to both low-carbon steels and aluminum, may not apply to austenitic stainless steels. It appears that the forming limits of austenitic stainless steels may be predicted fairly well by using the classical localized and diffuse necking criteria developed by Hill. The fracture criterion of Ritchie and Thompson seems to overestimate the fracture limit. Better models are needed for the work hardening and to develop better limit strain criteria, since the work hardening seems to depend strongly on both strain rate and temperature. The formability of austenitic stainless steels appears to remain good even when coated with hard TiN, although unavoidable cracks will appear with continuing straining.
Przedmiotem pracy jest odkształcalność graniczna stali austenitycznych. Zaobserwowano, że odkształcalność przy dwuosiowym rozciąganiu, gdy dwa naprężenia główne są dodatnie, nie jest wyznaczana przez lokalne tworzenie się szyjki, ale przez pękanie wywołane przez ścinanie w kierunku grubości blachy. Dlatego metoda Marciniaka-Kuczynskiego, która jest z powodzeniem stosowana do stali nisko-węglowych i aluminium, może nie stosować się do stali austenitycznych. Okazuje się, że odkształcenia graniczne stali austenitycznych mogą być poprawnie przewidywane przez zastosowanie opracowanego przez Hilla klasycznego kryterium lokalizacji i rozprzestrzeniania się szyjki. Kryterium pękania Ritchie-Thompsona wydaje się przeszacowywać granicę pękania. Ponieważ umocnienie zależy mocno od prędkości odkształcenia i temperatury, lepsze modele są potrzebne do opisu umocnienia i opracowania poprawnego kryterium granicznych odkształceń. Odkształcalność graniczna stali austenitycznej utrzymuje się na dobrym poziomie nawet wtedy, gdy stal jest pokryta TiN, chociaż nieuniknione pęknięcia pojawią się w czasie odkształcenia.
Czasopismo
Rocznik
Tom
Strony
178-187
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
Bibliografia
- Andersson, R., Schedin, E., Magnusson, C., Ocklund, J., Persson, A., 2002, The Applicability of Stainless Steels for Crash Absorbing Components, SAE Technical Paper 2002 -01-2020, Int. Body Engineering Conference & Exhibition and Automotive & Transportation Technology Congress, Paris, Society of Automotive Engineers.
- Arrieux, R., Bedrin, C., Boivin, M., 1982, Determination of an intrinsic forming limit stress diagram for isotropic metal sheets, 12th IDDRG Biennial Meeting, S. Margherita Ligure, Working Group Meetings, WG I, 61-71.
- Bao, Y., Wierzbicki, T., 2004, A Comparative Study on Various Ductile Crack Formation Criteria, J. Eng. Mater. Techn., 126, My, 314-324.
- Chow, C. L., Jie, M., Wu, X., 2005, Localized Necking Criterion for Strain-Softening Materials, J. Eng. Mater. Techn., 127, 273-278.
- Col, A., 2005, Forming limit curves: are we at the turn?, Proc. 24th IDDRG Congress, Besancon, Paper No. 18.
- Engel, Z., 1994, Historical Aspects of Huber's Work, in Huber's Yield Criterion in Plasticity, eds, Pietrzyk, M., Kusiak, J., Sadok, L., Engel, Z., Akademia Górniczo-Hutnicza, Kraków, 1-7.
- Eriksson, L., Harju, E., Korhonen, A. S., Pischow, K., 1992, Formability and corrosion resistance of TiN-coated stainless steel sheet, Surface and Coatings Technology, 53, 153-160.
- Ferreira, P.J., Vander Sande, J.B., Amaral Fortes, M., Kyröläinen, A., 2004, Microstructure Development during High-Velocity Deformation, Metall. Mater. Trans. 35A, 3091-3101.
- Gensamer, M., 1946, Strength and ductility, Trans. Am. Soc. Metals, 36, 30-60.
- Habara, Y., 2004, Stainless Steel 200 Series: An Opportunity for Mn, in International Manganese Institute Annual Conference, Tokyo. http://www.manganese.org/2004AC_Presentations.php
- Hill, R., 1952, On the discontinuous plastic states, with a special reference to localized necking in thin sheets, J. Mech. Phys. Solids, 1, 19-30.
- Hill, R., 1957a, On the problem of uniqueness in the theory of rigid-plastic solid - III, J. Mech. Phys. Solids, 5, 153-161.
- Hill, R., 1957b, Stability of rigid-plastic solid, J. Mech. Phys. Solids, 6, 1-8.
- ISSF, 2005, "New 200-series" steels: An Opportunity or threat to the image of stainless steel?, International Stainless Steel Forum (ISSF), 14. http://www.worldstainless.org/articles/200series.pdf
- Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., Allwood, J., 2005, Asymmetric Single Point Incremental Forming of Sheet Metal, Annals of the CIRP, 54, 2, 623-649.
- Kemppainen, J., 2000, Stainless Steel - A New "Light Metal" for the Automotive Industry, Stainless Steel in Structural Automotive Applications — Properties and Case Studies, Paris Motor Show Mondial de l'Automobile, Euro Inox, The European Stainless Steel Development Association, 3. http://www.euro-inox.org/
- Kemppainen, J., Schedin, E., Sörqvist, E., 2002, HyTens Creates New Opportunities for High Strength Stainless Steel Applications, Acom, 3/4, 2-6.
- Kleemola, H. J., Pelkkikangas, M., 1977, Effect of predeformation and strain path on the forming limits of steel, copper and brass, Sheet Metal Industries, 54, 591-599.
- Korhonen, A. S., 1978a, On the Theories of Sheet Metal Necking and Forming Limits, J. Eng. Mater. Techn., 100, 303-309.
- Korhonen, A.S., 1978b, On the Work-hardening and Formability of Austenitic Stainless Steels, Sheet Metal Industries, 55, 5, 598-606.
- Korhonen, A. S., 1980, Localization of plastic flow and ductile fracture in metals, Acta Polytechnica Scandinavica Ch 144, 33 p.
- Korhonen, A. S., Eriksson, L., 1994, On the plastic flow and fracture of metals and hard coatings, in Huber 's Yield Criterion in Plasticity, eds, Pietrzyk, M., Kusiak, J., Sadok, L., Engel, Z., Akademia Górniczo-Hutnicza, Kraków, 293-303.
- Kuwabara, T., 2005, Advances of Plasticity Experiments on Metal Sheets and Tubes and their Applications to Constitutive Modeling, Proc. Numisheet 2005, AIP Conf. Proc., Vol. 778, 20-39.
- Lademo, O.-G., Pedersen, K. O., Berstad, T., Hopperstad, S., 2004, A numerical tool for formability analysis of aluminium alloys. Part II: Experimental validation, Steel Grips 2, Suppl. Metal Forming 2004, 433-437.
- Lankford, W. T., Low, J. R., Gensamer, M., 1947, The Plastic Flow of Aluminum Sheet Under Combined Loads, Trans. AIME, 171, 574-604.
- Makinouchi, A., Teodosiu, C., Nakagawa, T., 1998, Advance in FEM Simulation and its Related Technologies in Sheet Metal Forming, Annals of the CIRP, 47, 2, 641- 649.
- Manninen, T., Larkiola, J., Korhonen, A. S., 2002, Modeling of deep drawing of stainless steel, in Information Technology, Global Environment and Sheet Metal Forming, Proc. of the 22nd IDDRG Biennal Congress, Nagoya, 43-49.
- Martin, P. H., Smith, L. M., Petrusevski. S., 2006, A method for stress space forming limit diagram construction for aluminum alloys, J. Mat. Proc. Techn., 174, 258-265.
- McGinty, R. D., McDowell, D. L., 2004, Application of Multiscale Crystal Plasticity Models to Forming Limit Diagrams, J. Eng. Mater. Techn., 126, 285-291.
- Müschenborn, W., Sonne, H.-M., 1975, Influence of the strain path on the forming limits of sheet metal, Archiv für das Eisenhüttenwesen, 46, 598-602.
- Nakamoto, K., Shiotani, K., Makimoto, M., Saito, M., 1993, Development of Colored Stainless Steel Sheets by Ceramics Coating, ISIJ Int., 33, 968-975.
- Painter, M. J., Pearce, R., 1974, Instability and fracture in sheet metal, J. Phys. D: Appl. Phys. 7, 992-1002.
- Pischow, K. A., Eriksson, L., Korhonen, A. S., Forsen, O., Turkia, M., Ristolainen, E. O., 1994, Corrosion behavior of decorative car parts and outdoor lighting fixtures fabricated from TiN-coated stainless steel, Surf. Coat. Techn., 67, 85-93.
- Ritchie, R. O., Thompson, A. W., 1985, On Macroscopic and Microscopic Analyses for Crack Initiation and Crack Growth Toughness in Ductile Alloys, Metall. Trans., 16A, 233-247.
- Rogers, H. C., 1960, The tensile fracture of ductile metals, Trans. Met. Soc. AIME, 218, 491-506.
- Samuel, K. G., 2006, Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters, J. Phys. D: Applied Physics, 39, 203-212.
- Seth, M., Yohnout, V. J., Daehn, G. S., 2005, Formability of steel sheet in high velocity impact, J. Mat. Proc. Techn., 168,390-400.
- Stoughton, T. B., 2002, The Influence of the Material Model on the Stress-Based Forming Limit Criterion, SAE 2002 World Congress & Exhibition, Detroit, SAE Technical Paper No. 2002-01-157, 10.
- Talonen, J., Nenonen, P., Hänninen, H., 2.004, Static strain ageing of cold-worked austenitic stainless steel, Proc. of the 7th Int. Conf. on High Nitrogen Steels, Steel Grips 2 (2004) Suppl. High Nitrogen Steels, 113-122.
- Talyan, V., Wagoner, R. H., Lee, J. K., 1998, Formability of Stainless Steel, Metall. Mater. Trans., 29A, 2161-2172.
- Yagodzinskyy, Y., Pimenoff, J., Tarasenko, T., Romu, J., Nenonen, P., Hanninen, H., 2004, Grain Refinement Process for Superplastic Forming of AISI 301 and 304L Austenitic Stainless Steels, Mat. Sci. Techn., 20, 925-929.
- Yoshida, K., Kuwabara, T., Narihara, K., Takahashi, S., 2005, Experimental Verification of the Path-Independence of Forming Limit Stresses, Int J. Forming Proc., Special Issue 2005, eds, Habraken, A.-M., Stören, S., 283-298.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0017-0019