Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | Vol. 23 | 97-128
Tytuł artykułu

Sound Radiation by Axisymetrical Elastic Shells and Plates

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of coupling between vibration of elastic structures and produced soundn is discussed in the paper. The shells of revolution are considered as the elastic structures. The Finite Element Method (FEM) is used for calculation of the vibration, and the Boundary Element Method (BEM) - for calculations of sound radiation. Themixed FEM-BEM-method for calculations of vibration coupled with sound radiation is described. Two variants of this method have been developed. The numerical example - the vibrating circular plaet immersed into air - is presented.
Wydawca

Rocznik
Tom
Strony
97-128
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • Wrocław University of Technology, Institute of Telecommunications and Acoustics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, andrzej.dobrucki@pwr.wroc.pl
  • Wrocław University of Technology, Institute of Telecommunications and Acoustics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] J.-P. Coyette, J.van de Peer, Direct Collocation Method, SYSNOISE Theoretical Manual, Revision 5.1, Numerical Integration Technologies N.V., Leuven, Belgium, 1993.
  • [2] Y. Kagawa, T. Yamabuchi, K. Sugihara, T. Shindou, “A Finite Element Approach to a Coupled Structural-Acoustic Radiation System with Application to Loudspeaker Characteristic Calculation”, Journal of Sound and Vibration, 69, 2, 229-243, (1980).
  • [3] W. Rdzanek, „Acoustical impedance of a circular diaphragm excited by the force with uniform surface distribution”, Arch. Akusi., 21,1, 81-94, (1986) (in Polish).
  • [4] A. Dobrucki, Theory of vibration and sound radiation by loudspeaker conical membrane, Scientific Papers of the Institute of Telecommunication and Acoustics No. 34, Monographs No. 16, Wroclaw 1978 (in Polish).
  • [5] F.J.M. Frankort, „Vibration and Sound Radiation of Loudspeaker Cones”, Philips Res. Repts. Suppl., 2, (1975)
  • [6] J. Panzer, “Radiation Impedance of Cones at High Frequencies”, 112th Convention of the Audio Engineering Society, Munich, Germany 2002, Convention Paper 5520.
  • [7] G. Strang, G.J. Fix, An analysis of the finite element method, Prentice Hall Inc., 1973.
  • [8] A. Dobrucki, “Nontypical Effects in an Electrodynamic Loudspeaker with a Nonomogeneous Magnetic Field in the Air Gap and Nonlinear Suspensions”, J. Audio Eng. Soc., 42, 7/8, 565-576, (1994).
  • [9] A. Dobrucki, “Theory of piezoelectric axisymmetric bimorph”. Sensors and Actuators A- Physical, 58, 203-212,(1997).
  • [10] A. Dobrucki, Numerical modelling of the moving system of electrodynamic loudspeaker, Scientific Papers of the Institute of Telecommunication and Acoustics No. 70, Monographs No. 35, Wroclaw 1992 (in Polish).
  • [11] A.F. Saybert, T.K. Rengarajan, „The use of CHIEF to obtain unique solutions for acoustic radiation using boundary integral equations“, J. Acoust. Soc. Am., 81, 5, May (1987)
  • [12] E. Skudrzyk, The foundation of acoustics, Springer Verlag, Wien, New York 1971
  • [13] M. A. Golberg, Boundary Integral Methods, Numerical and Mathematical Aspects, WIT Press 1999.
  • [14] A. Brański , The analysis of the selected boundary problems, Edited by WSP Rzeszów, 2001 (in Polish).
  • [15] M. A. Golberg, Boundary Integral Methods, Numerical and Mathematical Aspects, WIT Press, 1999.
  • [16] W. Eversman, „Mapped infinite wave envelope elements for acoustic radiation in a uniformly moving medium“, Journal of Sound and Vibration, 224, 4, 665-687 (1999)
  • [17] H.A.Schenck, “Improved integral formulation for acoustic radiation problems", J. Acoust. Soc. Am., 44, 1, 41-58, (1968).
  • [18] L.G. Copley, “Integral equations method for radiation from vibrating bodies”, J. Acoust. Soc. Am., v. 41, 4, 807-816 (1967)
  • [19] A.J. Burton, G.F. Miller, “The application of integral equation methods to the numerical solution of some exterior boundary value problems”, Proc. Roy. Soc., London, Ser. A323, 201-210,(1971)
  • [20] J. Hald, “STSF - a unique technique for scan-based Near-field Acoustic Holography without restriction on coherence”, Technical Review of Bruel & Kjaer, no. I, (1989)
  • [21] B. Żółtogórski, “Inverse radiation problem - capabilities and limitation”, 98th Convention of the Audio Engineering Society Preprints, No. 3981, Paris (1995)
  • [22] A.B. Dobrucki, C. Szmal, B. Żółtogórski, “Numerical modelling of axisymmetric sources in infinite baffle”, 137th Regular Meeting of the Acoustical Society of America, 2nd Convention of the European Acoustics Association: Forum Acusticum - integrating the 25th German Acoustics DAGA Conference, Collected papers, Berlin, March 14-19, (1999).
  • [23] A. Dobrucki, „A method for assessment of the convergence of the iterative algorithm of the calculation of sound radiation by vibrating shells”, XLI Open Seminar on Acoustics, Wroclaw-Szklarska Poręba, 83-86, (1994) (in Polish).
  • 24. A. Dobrucki, P. Pruchnicki, B. Żółtogórski, " computer modellingof loudspeaker vibrating system", The 100th Convention Audio Engineering Society, Copenhagen, Preprint 4207, (1996).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0008-0056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.