Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. spec. iss. (2) | 131-145
Tytuł artykułu

Electromagnetically Induced Transparency

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
International Symposium on cold atoms and laser spectroscopy, 22th-27th October 2009, Vinh, Vietnam.
Języki publikacji
EN
Abstrakty
EN
In the initial part of the paper, the principles of the electromagnetically induced transparency (EIT) in basic three-level schemes are sketched, and some applications of this phenomenon are described. Next a presentation follows of a five-level EIT model of Bloch equations, which was developed to reconstruct multipeak cascade-EIT spectra registered in a sample of cold 85Rb atoms in MOT. The respective experiment is also described. The achieved good agreement between theory and performed experiment is documented and discussed.
Wydawca

Rocznik
Strony
131-145
Opis fizyczny
Bibliogr. 72 poz., rys.
Twórcy
autor
autor
autor
autor
  • Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland, krkowal@ifpan.edu.pl
Bibliografia
  • [1] K. Kowalski et al. Magneto-optical Trap: fundamentals and realizations. (our other paper in this issue).
  • [2] S.E. Harris, J.E. Field, A. Imamoglu, Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990).
  • [3] M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 634 (2005).
  • [4] W. Gawlik, Optical nonlinearity and atomic coherences. In: Modern Nonlinear Optics, Part 3, Eds.: M. Evans, S. Kielich. Advances in Chemical Physics Series, LXXXV, 734 (1994).
  • [5] J.P. Marangos, Electromagnetically Induced Transparency. J. Mod. Optics 45, 471 (1998).
  • [6] J.P. Marangos, T. Halfmann, Electromagnetically Induced Transparency. Chapter 14 in Handbook of Optics, Third Edition, vol. IV, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, Editors: M. Bass, G. Li, E.V. Stryland, Mc Graw Hill, New York etc., 14.1-14.44 (2010).
  • [7] A. Imamoglu, S.E. Harris, Lasers without inversion: Interference of dressed lifetime-broadened states. Opt. Lett. 14, 1344 (1989).
  • [8] K.J. Boller, A. Imamoglu, S.E. Harris, Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991).
  • [9] J-J Su, I.A. Yu, The Study of Coherence-Induced Phenomena Using Double-Sided Feynman Diagrams. Chin J. Phys. 41, 627 (2003).
  • [10] S. Jin, Y. Li, M. Xiao, Hyperfine spectroscopy of highlyexcited atomic states based on atomic coherence. Opt. Commun. 119, 90 (1995).
  • [11] S. Stenholm, Foundations of Laser Spectroscopy. Wiley, N. York (1984).
  • [12] M. Yan, E.G. Rickey, Y. Zhu, Electromagnetically induced transparency in cold rubidium atoms. J. Opt. Soc. Am. B 18, 1057 (2001).
  • [13] J. Gea-Banacloche, Y-q Li, S-z Jin, M. Xiao, Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment. Phys. Rev. A 51, 576 (1995).
  • [14] D.J. Fulton, S. Shepherd, R.R. Moseley, B.D. Sinclair, M.H. Dunn, Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems. Phys. Rev. A 52, 2302 (1995).
  • [15] J.R. Boon, E. Zekou, D. McGloin, M.H. Dunn, Comparison of wavelength dependence in cascade, Λ, and Vee-type schemes for electromagnetically induced transparency. Phys. Rev. A 59, 4675 (1999).
  • [16] H.X. Chen, A.V. Durrant, J.P. Marangos, J.A. Vaccaro, Observation of transient electromagnetically induced transparency in a rubidium Λ system. Phys. Rev. A 58, 1545 (1998).
  • [17] J. Clarke, H. Chen, W.A. van Wijngaarden, Electromagnetically induced transparency and optical switching in a rubidium cascade system. Appl. Opt. 40, 2047 (2001).
  • [18] S.E. Harris, Y. Yamamoto, Photon Switching by Quantum Interference. Phys. Rev. Lett. 81, 3611 (1998).
  • [19] M.O. Scully, M. Fleischhauer, High-sensitivity magnetometer based on index-enhanced media. Phys. Rev. Lett. 69, 1360 (1992).
  • [20] H. Lee, M. Fleischhauer, M.O. Scully, Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence. Phys. Rev. A 58, 2587 (1998).
  • [21] V.A. Sautenkov, M.D. Lukin, C.J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, V.L. Velichansky, G.R. Welch, M.O. Scully, Enhancement of magneto-optic effects via large atomic coherence in optically dense media. Phys. Rev. A 62, 023810 (2000).
  • [22] A.V. Turukhin, V.S. Sudarshanam, J.A. Musser, B.S. Ham, P.R. Hemmer, Observation of Ultraslow and Stored Light Pulses in a Solid. Phys.Phys. Rev. Lett. 88, 023602 (2002).
  • [23] B. Ham, P. Hemmer, M. Shahriar, Efficient electromagnetically induced transparency in a rare-earth doped crystal. Optics Commun. 144, 227 (1997).
  • [24] M. Philips, H. Wang, Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well. Opt. Lett. 28, 831 (2003).
  • [25] G.B. Serapiglia, E. Paspalakis, C. Sirtori, K.L. Vodopyanov, C.C. Phillips, Observation of Laser-Induced Quantum Coherence in a Semiconductor Quantum Well. Phys. Rev. Lett. 84, 1019 (2000).
  • [26] M.C. Phillips, H. Wang, Spin coherence and electromagnetically induced transparency via exciton correlations. Phys.Rev. Lett. 89, 186401 (2002).
  • [27] W.W. Chow, H.C. Schneider, M.C. Phillips, Theory of quantum-coherence phenomena in semiconductor quantum dots. Phys. Rev. A68, 053802 (2003).
  • [28] M.C. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, R. Binder, Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence. Phys. Rev. Lett. 91, 183602 (2003).
  • [29] J. Houmark, A.P. Jauho, T.R. Nielsen, J. Mørk, Influence of many-particle interactions on slow light phenomena in quantum dots. J. Phys. Conference Series 107, 012005 (2008).
  • [30] Y. Wu, X. Yang, Phys. Rev. A 71, 053806 (2005).
  • [31] S. Marcinkievicius, A. Gushterov, J.P. Reithmaier, Transient electromagnetically induced transparency in self-assembled quantum dots. Appl. Phys. Lett. 92, 041113 (2008).
  • [32] Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd, A.L. Gaeta, Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber. Phys. Rev. Lett. 94, 153902 (2005).
  • [33] Q. Xu, S. Sandhu, M.L. Povinelli, J. Shakya, S. Fan, M. Lipson, Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency. Phys. Rev. Lett. 96, 123901 (2006).
  • [34] H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, L. Kuipers, Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides. Phys. Rev. Lett. 94, 073903 (2005).
  • [35] S.E. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, K. Busch, All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures. Phys Rev E 74, 046603-(1-15) (2006).
  • [36] A. Rostami, G. Rostami, Full-optical realization of tunable low pass, high pass and band pass optical filters using ring resonators. Opt. Commun. 240, 133 (2004).
  • [37] M. Davanco, P. Holmstrom, D.J. Blumenthal, L. Thylen, Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency. IEEE J. Quant. Eelectr. 39 (4) (2003).
  • [38] A. Neogi, T. Mozume, H. Yoshida, O. Wada, Intersubband transition at 1.3 and 1.55 lm in a novel coupled InGaAs/-AlAsSb quantum well structures. IEEE Photon. Technol. Lett. 11, 632 (1999).
  • [39] M.D. Lukin, Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457 (2003).
  • [40] S.E. Harris, J.E. Filed, A. Kasapi, Dispersive properties of electromagnetically induced transparency. Phys Rev. A 46, 29 (1992).
  • [41] A. Kasapi, M. Jain, G.Y. Yin, S.E. Harris, Electromagnetically Induced Transparency: Propagation Dynamics. Phys. Rev. Lett. 74, 2447 (1995)
  • [42] O. Schmidt, R. Wynands, Z. Hussein, D. Meschede, Steep dispersion and group velocity below c/3000 in coherent population trapping. Phys. Rev. A 53, R27 (1996).
  • [43] L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999).
  • [44] M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, George R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, M.O. Scully, Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas. Phys. Rev. Lett. 82, 5229 (1999).
  • [45] D. Budker, F. Kimball, S.M. Rochester, V.V. Yashchuk, Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation. Phys. Rev. Lett. 83, 1767 (1999).
  • [46] D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, Storage of Light in Atomic Vapor. Phys. Rev. Lett. 85, 783 (2001).
  • [47] Ch. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Observation of coherent optical information storage in anatomic medium using halted light pulses. Nature 409, 493 (2001).
  • [48] Slow light. Nature Photonics, Focus issue. 447-509 (August 2008, vol. 2), collection of articles.
  • [49] M.D. Lukin, Colloquium: Trapping and manipulating photon states in atomic ensemble. Rev. Mod. Phys. 75, 457-472 (2003).
  • [50] Zaremba, Propagation and storing of light in optically modified atomic media. J. Phys.: Conf. Ser. 213 012025-1-10 (2010).
  • [51] M. Fleischhauer, M.D. Lukin, Quantum memory for photons: Dark-state polaritons. Phys. Rev. A, 65, 022314 (2002).
  • [52] D. Dziczek, B. Ziętek, S. Chwirot, Low-Speed and Suspended Propagation of Light Pulses in Atomic Medium with Electromagnetically Induced Transparency. Acta Phys. Pol. A 106, 13 (2004).
  • [53] D. Dziczek, S. Chwirot, Dual control of slow light in reciprocal electromagnetically-induced-transparency conditions. Phys. Rev. A 79, 043807-1-9 (2009).
  • [54] A.V. Gorshkov, A. André, M.D. Lukin, A.S. Sørensen, Photon storage in Λ-type optically dense atomic media. III. Effects of inhomogeneous broadening. Phys. Rev. A 76, 033806-1-13 (2007).
  • [55] N.S. Ginsberg, S.R. Garner, L.V. Hau, Coherent control of optical information with matter wave dynamics. Nature 445, 623 (2007).
  • [56] T. Baba, D. Mori, Slow light engineering in photonic crystals. J. Phys. D 40 2659-2665 (2007).
  • [57] G.M. Gehring, R.W. Boyd, A.L. Gaeta, D.J. Gauthier, Fellow, A.E. Willner, Fiber-Based Slow-Light Technologies. Journal of Lightwave Technologies 23, 3752-3762 (2008).
  • [58] T.F. Krauss, Slow light in photonic crystal waveguides. J. Phys. D 40, 2666-2670 (2007).
  • [59] C. Monat, M. de Sterke, B.J. Eggleton, Slow light enhanced nonlinear optics in periodic structures. J. Opt. 12, 104003-1-17 (2010).
  • [60] S.A. Schulz, L.O. Faolain, D.M. Beggs, T.P. White, A. Melloni, T.F. Krauss, Dispersion engineered slow light in photonic crystals: a comparison. J. Opt. 12, 104004-1-10 (2010).
  • [61] K. Kowalski , E. Dimova-Arnaudova, K. Fronc, S. Gateva, M. Głódź, L. Lis, L. Petrov, J. Szonert, A System for magneto-optical cooling and trapping of Rb atoms. Opt. Applicata 36, 559 (2006).
  • [62] K. Kowalski, K. Vaseva, S. Gateva, M. Głódź, L. Petrov, J. Szonert, System for EIT spectroscopy of cold Rb atoms. Proc. of SPIE 6604 (2007) 66040K-1-5 (2007).
  • [63] K. Kowalski, V. Cao Long, H. Nguyen Viet, S. Gateva, M. Głódź, J. Szonert, Simultaneous coupling of three hfs components in a cascade scheme of EIT in cold 85Rb atoms. J. Non-Cryst. Solids 355, 1295-1301 (2009).
  • [64] Cao Long Van, Khoa Dinh Xuan, Thuan Bui Dinh, Hung Nguyen Viet, EIT in multi-level cascade scheme of cold rubidium atoms: theoretical conciderations. Communications in Physics 18, 146-150 (2008).
  • [65] J. Wang, L.B. Kong, X.H. Tu, K.J. Jiang, K. Li, H.W. Xiong, Y.F. Zhu, M.S. Zhan, Electromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms. Phys. Lett. A 328, 437 (2004).
  • [66] S.R. Echaniz, A.D. Greentree, A.V. Durrant, D.M. Segal, J.P. Marangos, J.A. Vacaro, Observations of a doubly driven V system probed to a fourth level in laser-cooled rubidium. Phys. Rev. A 013812 (2001).
  • [67] D. McGloin, Coherent effects in a driven Vee scheme. Phys. B 36, 2861 (2003).
  • [68] D. McGloin, D.J. Fulton, M.H. Dunn, Electromagnetically induced transparency in N-level cascade scheme. Opt. Commun. 190, 221 (2001).
  • [69] J. Wang, Y. Zhu, K.J. Jiang, M.S. Zhan, Bichromatic electromagnetically induced transparency in cold rubidium atoms. Phys. Rev. A 68, 063810 (2003).
  • [70] X-M. Hu, G-L. Cheng, J-H. Zou, X. Li, D. Du, Double switching from normal to anomalous dispersion via trichromatic phase manipulation of electromagnetically induced transparency. Phys. Rev. A72, 023803 (2005).
  • [71] M.O. Scully, M.S. Zubairy, Quantum Optics, Cambridge University Press, 1997.
  • [72] Y.C. Chen, C.-W. Lin, I.A. Yu, Roles of degenerate Zeeman levels in electromagnetically induced transparency. Phys. Rev. A 61, 053805 (2000).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0028-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.